1. Nội dung câu hỏi
Người ta ghi lại tốc độ của 40 xe đạp đi qua một vị trí trên đường. Mẫu số liệu dưới đây ghi lại tốc độ của 40 xe đó (đơn vị: km/h):
a) Lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy có năm nhóm ứng với năm nửa khoảng: [10 ; 12), [12 ; 14), (14 ; 16), [16 ; 18), [18 ; 20).
b) Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm trên (làm tròn các kết quả đến hàng phần mười).
2. Phương pháp giải
Áp dụng các công thức đã học để xác định các đại lượng tiêu biểu.
3. Lời giải chi tiết
a) Bảng tần số ghép nhóm cho mẫu số liệu có năm nhóm ứng với năm nửa khoảng
- Tốc độ trung bình của 40 xe đạp là:
\(\bar x = \frac{{11.8 + 13.12 + 15.9 + 17.7 + 19.4}}{{40}} \approx 14,4\) (km/h).
- Ta có: \(\frac{n}{2} = \frac{{40}}{2} = 20\) mà \(20 = 20 < 29.\) Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [14 ; 16) có \(r = 14,{\rm{ }}d = 2,{\rm{ }}{n_3} = 9\) và nhóm 2 là nhóm
[12 ; 14) có \(c{f_2} = 20.\)
Trung vị của mẫu số liệu là:
\({M_e} = r + \left( {\frac{{\frac{n}{2} - c{f_{k - 1}}}}{{{n_k}}}} \right).d = 14 + \left( {\frac{{20 - 20}}{9}} \right).2 = 14\) (km/h).
Tứ phân vị thứ hai của mẫu số liệu là: \({Q_2} = {M_e} = 14\) (km/h).
- Ta có: \(\frac{n}{4} = \frac{{40}}{4} = 10\) mà \(8 < 10 < 13.\) Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [12 ; 14) có \(s = 12,{\rm{ }}h = 2,{\rm{ }}{n_2} = 12\) và nhóm 1 là nhóm
[10 ; 12) có \(c{f_1} = 8.\)
Tứ phân vị thứ nhất của mẫu số liệu là:
\({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h = 12 + \left( {\frac{{10 - 8}}{{12}}} \right).2 = 12,3\) (km/h).
- Ta có: \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) mà \(29 < 30 < 36.\) Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm [16 ; 18) có \(t = 16,{\rm{ }}l = 2,{\rm{ }}{n_4} = 7\) và nhóm 3 là nhóm
[14 ; 16) có \(c{f_3} = 29.\)
Tứ phân vị thứ ba của mẫu số liệu là:
\({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l = 16 + \left( {\frac{{30 - 29}}{7}} \right).2 \approx 16,3\)(km/h).
- Ta thấy: Nhóm 2 ứng với nửa khoảng [12 ; 14) là nhóm có tần số lớn nhất với \(u = 12,{\rm{ }}g = 2,{\rm{ }}{n_2} = 12,{\rm{ }}{n_1} = 8,{\rm{ }}{n_3} = 9.\)
Mốt của mẫu số liệu là:
\({M_0} = u + \left( {\frac{{{n_i} - {n_{i - 1}}}}{{2{n_i} - {n_{i - 1}} - {n_{i + 1}}}}} \right).g = 12 + \left( {\frac{{12 - 8}}{{2.12 - 8 - 9}}} \right).2 \approx 13,1\) (km/h).
Bài 2: Sự điện li trong dung dịch nước. Thuyết Bronsted - Lowry về acid - base
Chương 1: Dao động
Phần ba. Sinh học cơ thể
Chương IV. Phòng, trị bệnh cho vật nuôi
CHƯƠNG IV- TỪ TRƯỜNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11