PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 27 trang 160 SBT toán 9 tập 1

Đề bài

Cho đường tròn \((O)\) và điểm \(I\) nằm bên trong đường tròn. Chứng minh rằng dây \(AB\) vuông góc với \(OI\) tại \(I\) ngắn hơn mọi dây khác đi qua \(I.\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: Trong hai dây của một đường tròn:

+) Dây nào lớn hơn thì dây đó gần tâm hơn.

Lời giải chi tiết

 

Gọi \(CD\) là dây bất kì đi qua \(I\) và \(CD\) không vuông góc với \(OI.\)

Kẻ \(OK ⊥ CD\)

Tam giác \(OKI\) vuông tại \(K\) nên \(OI > OK\)

Suy ra: \(AB < CD\) ( dây lớn hơn gần tâm hơn)

Vậy dây \(AB\) vuông góc với \(IO\) tại \(I\) ngắn hơn mọi dây khác đi qua \(I.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved