Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Cho hình bs.31, (\(R\) là điểm bất kì trên \(QP,\, S\) là điểm bất kì trên \(NO,\) hình thang \(NOPQ\) có diện tích \(S\)). Khi đó tổng diện tích của hai tam giác \(QSP\) và \(NRO\) bằng:
(A) \(\dfrac {1}{2}S\)
(B) \(\dfrac {1}{4}S\)
(C) \(\dfrac {3}{4}S\)
(D) \(S\)
Phương pháp giải - Xem chi tiết
Dựa vào công thức tính diện tích tam giác bằng nửa tích chiều cao và cạnh đáy tương ứng: \(S=\dfrac {1}{2}ah\)
Lời giải chi tiết
Gọi chiều cao của hình thang \(NOPQ\) là \(h\). độ dài đoạn thẳng \(NO,\, QP\) lần lượt là \(a,\,b\)
Khi đó diện tích hình thang \(NOPQ\): \(S= \dfrac {a+b}{2}.h\)
Ta có: \(S_{QSP}=\dfrac {1}{2}h.b\)
\(S_{NRO}=\dfrac {1}{2}h.a\)
Vậy tổng diện tích của hai tam giác là:
\(S_{QSP}+S_{NRO}\) \(=\dfrac {1}{2}h.b+\dfrac {1}{2}h.a\) \(=\dfrac {a+b}{2}.h\)
Vậy \(S_{QSP}+S_{NRO}=S\)
Chọn (D)
PHẦN 2. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
Tải 10 đề kiểm tra 15 phút - Chương 6
Language focus practice
SBT Toán 8 - Cánh Diều tập 1
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Từ giữa thế kỷ XVI đến năm 1917)
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8