1. Nội dung câu hỏi
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\). Gọi \(I\) là hình chiếu của \(A\) trên đường thẳng \(BC\), \(\alpha \) là góc giữa đường thẳng \(SI\) và mặt phẳng \(\left( {ABC} \right)\), \(\beta \) là số đo của góc nhị diện \(\left[ {S,BC,A} \right]\). Phát biểu nào sau đây là đúng?
A. \(\alpha = {90^o} - \beta \)
B. \(\alpha = {180^o} - \beta \)
C. \(\alpha = {90^o} + \beta \)
D. \(\alpha = \beta \)
2. Phương pháp giải
Vẽ hình, chỉ ra góc \(\alpha \) và \(\beta \) trên hình vẽ rồi so sánh chúng.
3. Lời giải chi tiết
Do \(SA \bot \left( {ABC} \right)\), ta suy ra hình chiếu của \(S\) trên \(\left( {ABC} \right)\) là điểm \(A\).
Suy ra góc giữa \(SI\) và \(\left( {ABC} \right)\) chính là góc \(\widehat {SIA}\), tức là \(\alpha = \widehat {SIA}\).
Mặt khác, do \(SA \bot \left( {ABC} \right)\), ta suy ra \(SA \bot BC\). Mà theo đề bài, \(AI \bot BC\) nên ta suy ra \(\left( {SAI} \right) \bot BC\), từ đó \(SI \bot BC\).
Như vậy, do \(SI \bot BC\), \(AI \bot BC\), nên \(\widehat {SIA}\) chính là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,A} \right]\), tức là \(\beta = \widehat {SIA}\).
Vậy ta suy ra \(\alpha = \beta \).
Đáp án đúng là D.
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Tải 20 đề kiểm tra 15 phút - Chương 4
Tải 10 đề kiểm tra 15 phút - Chương VII - Hóa học 11
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
Chương II. Vật liệu cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11