1. Nội dung câu hỏi
Cho \(\cos a = 0,2\) với \(\pi < a < 2\pi \). Tính \(\sin \frac{a}{2}\), \(\cos \frac{a}{2}\), \(\tan \frac{a}{2}\).
2. Phương pháp giải
Sử dụng các công thức \({\cos ^2}x = \frac{{1 + \cos 2x}}{2}\), \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\) và điều kiện \(\pi < a < 2\pi \) để tính \(\cos \frac{a}{2}\) và \(\sin \frac{a}{2}\).
Sử dụng công thức \(\tan \frac{a}{2} = \frac{{\sin \frac{a}{2}}}{{\cos \frac{a}{2}}}\) để tính \(\tan \frac{a}{2}\).
3. Lời giải chi tiết
Ta có:
\({\cos ^2}\frac{a}{2} = \frac{{1 + \cos a}}{2} = \frac{{1 + 0,2}}{2} = 0,6 \Rightarrow \cos \frac{a}{2} = \pm \frac{{\sqrt {15} }}{5}\)
\({\sin ^2}\frac{a}{2} = \frac{{1 - \cos a}}{2} = \frac{{1 - 0,2}}{2} = 0,4 \Rightarrow \sin \frac{a}{2} = \pm \frac{{\sqrt {10} }}{5}\)
Do \(\pi < a < 2\pi \Rightarrow \frac{\pi }{2} < \frac{a}{2} < \pi \Rightarrow \left\{ \begin{array}{l}\cos \frac{a}{2} < 0\\\sin \frac{a}{2} > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \frac{a}{2} = - \frac{{\sqrt {15} }}{5}\\\sin \frac{a}{2} = \frac{{\sqrt {10} }}{5}\end{array} \right.\)
Từ đó, \(\tan \frac{a}{2} = \frac{{\sin \frac{a}{2}}}{{\cos \frac{a}{2}}} = \frac{{\frac{{\sqrt {10} }}{5}}}{{ - \frac{{\sqrt {15} }}{5}}} = - \frac{{\sqrt 6 }}{3}\)
Unit 1: Eat, drink and be healthy
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Unit 4: Preserving World Heritage
Chủ đề 2: Kĩ thuật dừng bóng và kĩ thuật đánh đầu
Cumulative Review
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11