Đề bài
Chứng minh rằng nếu \(x > - 1\) thì \({(1 + x)^n} \ge 1 + nx\) với mọi số tự nhiên n.
Lời giải chi tiết
Ta chứng minh (5) bằng phương pháp quy nạp
Với \(n = 0\) ta có \({(1 + x)^0} \ge 1 + 0.x\)
Vậy (5) đúng với \(n = 0\)
Giải sử (5) đúng với \(n = k\) tức là ta có \({(1 + x)^k} \ge 1 + kx\)
Ta chứng minh (5) đúng với \(n = k + 1\) tức là chứng minh \({(1 + x)^{k + 1}} \ge 1 + (k + 1)x\)
Thật vậy, ta có
\({(1 + x)^{k + 1}} = (1 + x){(1 + x)^k} \ge (1 + x)(1 + kx) = 1 + (1 + k)x + k{x^2} \ge 1 + (k + 1)x\)
Do \(1 + x > 0,k{x^2} \ge 0\)
Vậy (5) đúng với mọi số tự nhiên n.
Chữ bầu lên nhà thơ
Unit 11. Achievements
Phần làm văn
Chuyên đề 3. Đọc, viết và giới thiệu một tập thơ, tập truyện ngắn hoặc một tiểu thuyết
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10