PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 2

Bài 25 trang 104 SBT toán 9 tập 2

Đề bài

Từ một điểm \(M\) cố định ở bên ngoài đường tròn tâm \(O\) ta kẻ một tiếp tuyến \(MT\) và một cát tuyến \(MAB\) của đường tròn đó.

\(a)\) Chứng minh rằng ta luôn có \(MT^2= MA.MB\) và tích này không phụ thuộc vị trí của cát tuyến \(MAB.\)

\(b)\) Ở hình \(2\) khi cho \(MB =  20 cm,\)\( MB  = 50 cm,\) tính bán kính đường tròn.

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Trong một đường tròn, góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

+) Hai tam giác đồng dạng thì ta có các cạnh tương ứng tỉ lệ.

Lời giải chi tiết

 

\(a)\) 

 

Xét \(∆MTA\) và \(∆MTB,\) có: 

+) \(\widehat M\) chung

+) \(\widehat {MTA} = \widehat {TBA}\) (hệ quả góc giữa tia tiếp tuyến và dây), hay \(\widehat {MTA} = \widehat {TBM}\)

Suy ra: \(∆MAT\) đồng dạng \(∆MTB\)

\(\displaystyle  \Rightarrow {{MT} \over {MA}} = {{MB} \over {MT}}\)

\( \Rightarrow M{T^2} = MA.MB\)

Vì \(MA.MB=MT^2\) mà \(MT\) là tiếp tuyến của đường tròn \((O)\) nên tích \(MA.MB\) không phụ thuộc vị trí của cát tuyến \(MAB.\)

\(b)\)

Gọi bán kính \((O)\) là \(R\)

\(MB = MA + AB = MA + 2R\)

\( \Rightarrow MA = MB - 2R\)

\(M{T^2} = MA.MB\) (chứng minh trên)

\( \Rightarrow M{T^2} = \left( {MB - 2R} \right)MB\)

\( \Rightarrow R = \displaystyle {{M{B^2} - M{T^2}} \over {2MB}}\)

\( =\displaystyle  {{2500 - 400} \over {2.50}} = 21 (cm)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved