PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 2.5, 2.6, 2.7, 2.8 phần bài tập bổ sung trang 109 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 2.5
Bài 2.6
Bài 2.7
Bài 2.8

Xét hình bs. 4. Tìm đẳng thức đúng trong các bài từ 2.5 đến 2.8.

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 2.5
Bài 2.6
Bài 2.7
Bài 2.8

Bài 2.5

Bài 2.5

(A) \(\sin \alpha  = \sin \beta \);

(B) \(\sin \alpha  = \cos \beta\);

(C) \(\sin \alpha  = tg\beta \);

(D) \(\sin \alpha  = {\mathop{\rm cotg}\nolimits} \beta \).

Phương pháp giải:

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \)

Lời giải chi tiết:

Đặt tên hình như hình dưới đây (sử dụng cho các bài 2.5 đến 2.8):

=

Xét tam giác ABC vuông tại A, ta có:

\(\alpha  + \beta  = 90^\circ \)

Vậy \(\alpha, \beta\) là hai góc phụ nhau:

\(\sin \alpha  = c{\rm{os}}\beta. \)

Vậy đáp án đúng là (B).   

Bài 2.6

Bài 2.6

(A) \(\cos \alpha  = \cos \beta \);

(B) \(\cos \alpha  = tg\beta \);

(C) \(\cos \alpha  = {\mathop{\rm cotg}\nolimits} \beta \); 

(D) \(\cos \alpha  = \sin \beta \)

Phương pháp giải:

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \)

Lời giải chi tiết:

Xét tam giác vuông ABC ta có:

\(\alpha  + \beta  = 90^\circ \)

Vậy \(\alpha, \beta\) là hai góc phụ nhau:

\(\cos \alpha  = s{\rm{in}}\beta. \)

Vậy đáp án đúng là (D).

Bài 2.7

Bài 2.7

(A) \(tg\alpha  = tg\beta \);

(B) \(tg\alpha  = cotg\beta \);

(C) \(tg\alpha  = \sin \beta \);

(D) \(tg\alpha  = \cos \beta \).

Phương pháp giải:

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \)

Lời giải chi tiết:

Xét tam giác ABC ta có:

\(\alpha  + \beta  = 90^\circ \)

Vậy \(\alpha, \beta\) là hai góc phụ nhau:

\(\ tg \alpha  = c{\rm{otg}}\beta. \)

Vậy đáp án đúng là (B).

Bài 2.8

Bài 2.8

(A) \(\cot g\alpha  = tg\beta \);

(B) \(\cot g\alpha  = cotg\beta \);

(C) \(\cot g\alpha  = \cos \beta \); 

(D) \(\cot g\alpha  = \sin \beta \).

Phương pháp giải:

Với hai góc \(\alpha ,\beta \) sao cho  \(\alpha  + \beta  = 90^\circ \)

Ta có: \(\sin \alpha  = \cos \beta ;\) \(\sin \beta  = \cos \alpha ;\)\(\tan \alpha  = \cot \beta ;\) \(\tan \beta  = \cot \alpha. \)

Lời giải chi tiết:

Xét tam giác ABC ta có:

\(\alpha  + \beta  = 90^\circ \)

Vậy \(\alpha, \beta\) là hai góc phụ nhau:

\(\ cotg \alpha  = t{\rm{g}}\beta. \)

Vậy đáp án đúng là (A).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved