Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Cho tứ diện \(ABCD\). Trên ba cạnh \(AB, AC, AD\) lần lượt lấy các điểm \(B’, C’, D’\) sao cho đường thẳng \(B’C’\) cắt đường thẳng \(BC\) tại \(K\), đường thẳng \(C’D’\) cắt đường thẳng \(CD\) tại \(J\), đường thẳng \(D’B’\) cắt đường thẳng \(DB\) tại \(I\).
a) Chứng minh ba điểm \(I, J, K\) thẳng hàng.
b) Lấy điểm \(M\) ở giữa đoạn thẳng \(BD\); điểm \(N\) ở giữa đoạn thẳng \(CD\) sao cho đường thẳng \(MN\) cắt đường thẳng \(BC\) và điểm \(F\) nằm bên trong tam giác \(ABC\). Xác định thiết diện của tứ diện \(ABCD\) khi cắt bởi mặt phẳng \((MNF)\).
Phương pháp giải - Xem chi tiết
a) Chứng minh ba điểm \(I,J,K\) cùng thuộc giao tuyến của \((CBD)\) và \((C’B’D’)\).
b) Xác định giao tuyến của mặt phẳng \((MNF)\) với các mặt của \(ABCD\).
Lời giải chi tiết
a) Ta có:
\(K = B'C' \cap BC\)\( \Rightarrow \left\{ \begin{array}{l}K \in B'C' \subset \left( {B'C'D'} \right)\\K \in BC \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow K \in \left( {B'C'D'} \right) \cap \left( {BCD} \right)\)
\(J = C'D' \cap CD\)\( \Rightarrow \left\{ \begin{array}{l}J \in C'D' \subset \left( {B'C'D'} \right)\\J \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow J \in \left( {B'C'D'} \right) \cap \left( {BCD} \right)\)
Do đó \(KJ = \left( {B'C'D'} \right) \cap \left( {BCD} \right)\).
Mà \(I = B'D' \cap BD\)\( \Rightarrow \left\{ \begin{array}{l}I \in B'D' \subset \left( {B'C'D'} \right)\\I \in BD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {B'C'D'} \right) \cap \left( {BCD} \right) = KJ\)
Vậy ba điểm I, J, K thẳng hàng.
b) Trong (BCD), gọi \(R = MN \cap BC\).
Trong (ABC), gọi \(P,Q\) lần lượt là giao điểm của RF với AB, AC.
Khi đó
\(\begin{array}{l}\left( {MNF} \right) \cap \left( {BCD} \right) = MN\\\left( {MNF} \right) \cap \left( {ACD} \right) = NQ\\\left( {MNF} \right) \cap \left( {ABC} \right) = QP\\\left( {MNF} \right) \cap \left( {ABD} \right) = PM\end{array}\)
Vật thiết diện là tứ giác MNQP.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 11
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VII - Hóa học 11
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Unit 5: Cities and Education in the future
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11