HÌNH HỌC SBT - TOÁN 11

Bài 2.48 trang 83 SBT hình học 11

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là tứ giác \(ABCD\). Gọi \(G_1\) và \(G_2\) lần lượt là trọng tâm của các tam giác \(SBC\) và \(SCD\)

Tìm giao tuyến của mặt phẳng \((AG_1G_2)\) với các mặt phẳng \((ABCD)\) và \((SCD)\).

Xác định thiết diện của hình chóp với mặt phẳng \((AG_1G_2)\).

Phương pháp giải - Xem chi tiết

- Sử dụng tính chất: "Nếu mặt phẳng \((\alpha )\) song song với đường thẳng \(a\) nằm trong mặt phẳng \((\beta )\) thì \((\alpha )\) cắt \((\beta )\) theo giao tuyến \(b//a\)".

- Tìm các giao tuyến của \((AG_1G_2)\) với các mặt của hình chóp suy ra thiết diện.

Lời giải chi tiết

 

Gọi \(I, J\) lần lượt là trung điểm của \(BC, CD\).

Ta có \(IJ\parallel {G_1}{G_2}\) nên giao tuyến của hai mặt phẳng \((AG_1G_2)\) và \((ABCD)\) là đường thẳng \(d\) qua \(A\) và song song với \(IJ\)

Gọi \(O = IJ \cap AC,\) \(K = {G_1}{G_2} \cap SO,L = AK \cap SC\)

\(LG_2\) cắt \(SD\) tại \(R\)

\(LG_2\) cắt \(SB\) tại \(Q\)

Khi đó \(\left( {A{G_1}{G_2}} \right) \cap \left( {SCD} \right) = LR\)

Ta có thiết diện là tứ giác \(AQLR\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved