PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 24 trang 83 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại \(A.\) Trên các cạnh bên \(AB,\) \(AC\) lấy các điểm \(M,\) \(N\) sao cho \(BM = CN.\)

\(a)\) Tứ giác \(BMNC\) là hình gì \(?\) Vì sao \(?\)

\(b)\) Tính các góc của tứ giác \(BMNC\) biết rằng \(\widehat A = {40^0}\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Hình thang là tứ giác có hai cạnh đối song song. 

+) Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết

 

\(a)\) \(∆ ABC\) cân tại \(A\)

\( \Rightarrow \widehat B = \widehat C \) (tính chất tam giác cân) 

Mà \(  \widehat B + \widehat C +\widehat A=180^0 \)  (tổng ba góc trong tam giác)

\( \Rightarrow \widehat B + \widehat C =180^0-\widehat A\)

\( \Rightarrow 2\widehat B =180^0-\widehat A\)

\( \Rightarrow \widehat B = \widehat C= \displaystyle {{{{180}^0} - \widehat A} \over 2}\) \((1)\)

\(AB = AC\;\;\; (gt) \)

\(⇒ AM + BM= AN+ CN\)

mà \(BM = CN \;\;\; (gt)\)

suy ra: \(AM = AN\)

\(⇒ ∆ AMN\) cân tại \(A\)

\( \Rightarrow {\widehat M_1} = {\widehat N_1} \) ( tính chất tam giác cân)

Mà \({\widehat M_1} + {\widehat N_1}+\widehat A=180^0 \)  (tổng ba góc trong tam giác)

\( \Rightarrow \widehat M_1 + \widehat N_1 =180^0-\widehat A\)

\( \Rightarrow 2\widehat M_1 =180^0-\widehat A\)

\( \Rightarrow {\widehat M_1} = {\widehat N_1}= \displaystyle {{{{180}^0} - \widehat A} \over 2}\)   \((2)\)

Từ \((1)\) và \((2)\) suy ra:  \({\widehat M_1} = \widehat B\)

\(⇒MN // BC\) ( vì có các cặp góc đồng vị bằng nhau)

Tứ giác \(BCMN\) là hình thang có \(\widehat B = \widehat C\). Vậy \(BCMN\) là hình thang cân.

\(b)\) Với \(\widehat A = {40^0}\) thì \(\widehat B = \widehat C =\displaystyle {{{{180}^0} - \widehat A} \over 2}\)\( = \displaystyle {{{{180}^0} - {{40}^0}} \over 2} = {70^0}\)

Vì \(MN//BC\) nên \({\widehat M_2} + \widehat B = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow {\widehat M_2} = {180^0} - \widehat B = {180^0} - {70^0} = {110^0}\)

Vì \(BCMN\) là hình thang cân nên \({\widehat N_2} = {\widehat M_2} = {110^0}\)   (tính chất hình thang cân)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved