PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 24 trang 102 Vở bài tập toán 9 tập 2

Đề bài

Cho đường tròn \((O)\) và hai dây \(AB, AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh \(\widehat {{\rm{AS}}C} = \widehat {ASM}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức :

+ Số đo của góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

+ Số đo góc nội tiếp bằng nửa số đo cung bị chắn

Lời giải chi tiết

Góc \(ASB\) là góc có đỉnh nằm bên ngoài đường tròn nên \(\widehat {ASB} = \dfrac{1}{2}\)(sđ \(\overparen{AB}\) - sđ \(\overparen{MC})\) \( = \dfrac{1}{2}\) (sđ\(\overparen{AC}\) - sđ \(\overparen{MC}\))        (1)

\(\widehat {MCA} = \dfrac{1}{2}\)sđ \(\overparen{AM}\)        (2)

Theo giả thiết ta có \(\overparen{AB}=\overparen{AC}\)

Do đó, \(\overparen{AB}\) - \(\overparen{MC}\) = \(\overparen{AC}\) - \(\overparen{MC}\) = \(\overparen{AM}\)

Vậy từ (1) và (2) ta có \(\widehat {ASC} = \widehat {MCA}\) (đpcm)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved