PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 2.4 phần bài tập bổ sung trang 63 SBT toán 9 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số \(y = \dfrac{{\sqrt m  + \sqrt 5 }}{{\sqrt m  - \sqrt 5 }}.x + 2010\) 

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Với điều kiện nào của \(m\) thì hàm số đã cho là hàm số bậc nhất?

Phương pháp giải:

Hàm số  \(y = ax + b\) xác định với mọi giá trị của \(x\) thuộc \(R\):

+ Để hàm số  \(y = ax + b\) là hàm bậc nhất thì \(a \ne 0\)

Lời giải chi tiết:

Để \(\sqrt m \) xác định khi \(m \ge 0\) 

\(\sqrt m  - \sqrt 5  \ne 0\)\( \Leftrightarrow \sqrt m  \ne \sqrt 5  \Leftrightarrow m \ne 5\)

Vậy điều kiện để hàm số đã cho là hàm số bậc nhất là \(m \ge 0\) và \(m \ne 5\)

LG b

LG b

Tìm các giá trị của \(m\) để hàm số đã cho là hàm số bậc nhất đồng biến trên \(R\).

Phương pháp giải:

Hàm số  \(y = ax + b\) xác định với mọi giá trị của \(x\) thuộc \(R\):

+ Để hàm số  \(y = ax + b\) là hàm bậc nhất thì \(a \ne 0\)

+ Để hàm số  \(y = ax + b\) đồng biến trên \(R\), thì \(a > 0\).

Lời giải chi tiết:

Với \(m \ge 0\) và \(m \ne 5\) thì hàm số đã cho là hàm số bậc nhất (theo câu a) 

Để hàm số đồng biến trên \(R\) thì:

\(\dfrac{{\sqrt m  + \sqrt 5 }}{{\sqrt m  - \sqrt 5 }} > 0\)

Do \({\sqrt m  + \sqrt 5 }>0\) (với \(m \ge 0\) và \(m \ne 5\)) nên \(\sqrt m  - \sqrt 5  > 0 \)\(\Leftrightarrow \sqrt m  > \sqrt 5  \Leftrightarrow m > 5\)

Vậy \(m>5\) thì hàm số đã cho đồng biến.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved