HÌNH HỌC SBT - TOÁN 11

Bài 2.33 trang 80 SBT hình học 11

Đề bài

Trong mặt phẳng \(\left( \alpha  \right)\) cho một tam giác \(ABC\) bất kì. Chứng minh rằng có thể xem tam giác \(ABC\) là hình chiếu song song của một tam giác đều nào đó.

Phương pháp giải - Xem chi tiết

Sử dụng khái niệm hình chiếu song song của một điểm:

Cho mặt phẳng \((\alpha)\) và đường thẳng \(\Delta\) cắt mặt phẳng \((\alpha)\). Với mỗi điểm \(M\) trong không gian, đường thẳng đi qua \(M\) và song song hoặc trùng với \(\Delta\) cắt \((\alpha)\) tại điểm \(M'\) xác định. Điểm \(M'\) được gọi là hình chiếu song song của một điểm \(M\) trên mặt phẳng \((\alpha)\) theo phương \(\Delta\).

Lời giải chi tiết

 

Cho tam giác \(ABC\) bất kì nằm trong mặt phẳng \(\left( \alpha  \right)\).

Gọi \(\left( \beta  \right)\) là mặt phẳng qua \(BC\) và khác với \(\left( \alpha  \right)\).

Trong \(\left( \beta  \right)\) ta vẽ tam giác đều \(BCD\).

Vậy ta có thể xem tam giác \(ABC\) cho trước là hình chiếu song song của tam giác đều \(DBC\) theo phương chiếu \(DA\) lên mặt phẳng \(\left( \alpha  \right)\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved