ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 2.33 trang 79 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG a
LG b

Đề bài

Viết khai triển của \({\left( {1 + x} \right)^6}\).

Phương pháp giải:

- Viết khai triển của \({(1+x)}^6\) theo công thức nhị thức Niu-tơn:

\({\left( {a + b} \right)^n} \)

\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)

\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Với \(n=6\), \(a=1\), \(b=x\).

Lời giải chi tiết:

Ta có: \((1 + x)^6  \)

\(= C_6^0{x^0} + C_6^1{x^1} + C_6^2{x^2} + C_6^3{x^3} \)

\(C_6^4{x^4}+C_6^5{x^5}+ C_6^6{x^6} \)

\(= 1 + 6x + 15{x^2} + 20{x^3} \)

\(+ 15{x^4} + 6{x^5} + {x^6}\)

LG a

Dùng ba số hạng đầu để tính gần đúng \(1,{01^6}\).

Phương pháp giải:

- Ta tách \(1,01^6=(1+0,01)^6\) sau đó sử dụng công thức khai triển của \({(1+x)}^6=1+6x+15x^2+20x^3\) \(+15x^4+6x^5+x^6\)

- Tính tổng ba số hạng đầu.

Lời giải chi tiết:

Ta có khai triển: \({\left( {1 + x} \right)^6} = 1 + 6x + 15{x^2} + 20{x^3} \)

\(+ 15{x^4} + 6{x^5} + {x^6}\)

Nên \(1,{01^6} = {\left( {1 + 0,01} \right)^6} \approx 1 + 6 \times 0,01\)

\(+ 15 \times {\left( {0,01} \right)^2} = 1,0615\).

LG b

Dùng máy tính để kiểm tra kết quả trên.

Phương pháp giải:

Sử dụng máy tính casio nhấn phép tính \(1,01^6\) để có kết quả.

Lời giải chi tiết:

Dùng máy tính ta nhận được \(1,{01^6} \approx 1,061520151\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved