1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right)\) thoả mãn \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2022\). Tính \(\mathop {\lim }\limits_{x \to + \infty } \frac{{xf\left( x \right)}}{{x + 1}}\).
2. Phương pháp giải
Chia cả tử và mẫu của biểu thức \(\frac{{xf\left( x \right)}}{{x + 1}}\) cho \(x\), rồi sử dụng các định lí về giới hạn hàm số.
3. Lời giải chi tiết
Ta có:\(\mathop {\lim }\limits_{x \to + \infty } \frac{{xf\left( x \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{xf\left( x \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)}}{{\mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x}}} = \frac{{2022}}{{1 + 0}} = 2022\).
SGK Toán 11 - Chân trời sáng tạo tập 1
Chuyên đề 3. Vệ sinh an toàn thực phẩm
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 11
Unit 6: Competitions - Những cuộc thi
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11