Bài 2.3 trang 100 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Cho a và b là các số dương. Đơn giản các biểu thức sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\( \dfrac{a^{\dfrac{4}{3}}\Big( a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}} \Big)} {a^{\dfrac{1}4}{\Big( a^{\dfrac{3}{4}} + a^{\dfrac{-1}{4}} \Big)}}\)

Phương pháp giải:

Sử dụng các công thức về tính chất của lũy thừa.

Lời giải chi tiết:

Với a và b là các số dương ta có:

\( \dfrac{a^{\dfrac{4}{3}}\Big( a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}} \Big)} {a^{\dfrac{1}{4}}\Big( a^{\dfrac{3}{4}} + a^{\dfrac{-1}{4}} \Big)}\)

\(= \dfrac{a^{\dfrac{4}{3}}. a^{\dfrac{-1}{3}} + a^{\dfrac{2}{3}}.a^{\dfrac{4}{3}} } {a^{\dfrac{1}{4}}. a^{\dfrac{3}{4}} + a^{\dfrac{1}{4}}. a^{\dfrac{-1}{4}}}\)

\(= \dfrac{a^1 + a^2}{a^1 + a^0} = \dfrac{a\Big( a + 1\Big)}{a + 1} =a \)

LG b

\( \dfrac{ a^{\dfrac{1}{3}}\sqrt{b} + b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} \)

Phương pháp giải:

Sử dụng các công thức về tính chất của lũy thừa.

Lời giải chi tiết:

\( \dfrac{ a^{\dfrac{1}{3}}\sqrt{b} + b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} \)

\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{2}} + b^{\dfrac{1}{3}}a^{\dfrac{1}{2}}}{ a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)

\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}\Big(b^{\dfrac{1}{2} - \dfrac{1}{3}}+ a^{\dfrac{1}{2} - \dfrac{1}{3}} \Big)}{a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)

\(= \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}\Big(b^{\dfrac{1}{6}} +a^{ \dfrac{1}{6}} \Big)}{a^{\dfrac{1}{6}} + b^{\dfrac{1}{6}}}\)

\( = {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} = {\left( {ab} \right)^{\frac{1}{3}}}\) \(=\sqrt[3]{ab} \)

LG c

\( \Big( \sqrt[3]{a} + \sqrt[3]{b} \Big)( a^{\dfrac{2}{3}} + b^{\dfrac{2}{3} }- \sqrt[3]{ab} \Big) \)

Phương pháp giải:

Sử dụng hằng đẳng thức \(\left( {A + B} \right)\left( {{A^2} - AB + {B^2}} \right) = {A^3} + {B^3}\)

Lời giải chi tiết:

\(\Big( \sqrt[3]{a} + \sqrt[3]{b} \Big)( a^{\frac{2}{3}} + b^{\frac{2}{3} }- \sqrt[3]{ab} \Big) \)

\(\begin{array}{l}
= \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - \sqrt[3]{{ab}} + {b^{\frac{2}{3}}}} \right)\\
= \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left( {{a^{\frac{2}{3}}} - {{\left( {ab} \right)}^{\frac{1}{3}}} + {b^{\frac{2}{3}}}} \right)
\end{array}\)

\(= \Big( a^{\frac{1}{3}} + b^{\frac{1}{3}}\Big) \Big( a^{\frac{2}{3}} - a^{\frac{1}{3}}. b^{\frac{1}{3}}+ b^{\frac{2}{3}}\Big)\)

\( = \left( {{a^{\frac{1}{3}}} + {b^{\frac{1}{3}}}} \right)\left[ {{{\left( {{a^{\frac{1}{3}}}} \right)}^2} - {a^{\frac{1}{3}}}{b^{\frac{1}{3}}} + {{\left( {{b^{\frac{1}{3}}}} \right)}^2}} \right]\)

\(= {\Big( a^{\frac{1}{3}} \Big) }^{3} + {\Big( b^{\frac{1}{3}} \Big) }^{3}\)

\(= a + b\)

LG d

\(\Big( a^{\dfrac{1}{3}} + b^{\dfrac{1}{3}} \Big) : \Big( 2 + \sqrt[3]{\dfrac{a}{b}} + \sqrt[3]{\dfrac{b}{a}}\Big).\)

Phương pháp giải:

Quy đồng mẫu thức tổng trong ngoặc và rút gọn biểu thức.

Lời giải chi tiết:

\(\begin{array}{l}
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\left( {2 + \frac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}} + \frac{{\sqrt[3]{b}}}{{\sqrt[3]{a}}}} \right)\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\frac{{2\sqrt[3]{a}.\sqrt[3]{b} + {{\left( {\sqrt[3]{a}} \right)}^2} + {{\left( {\sqrt[3]{b}} \right)}^2}}}{{\sqrt[3]{{ab}}}}\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right):\frac{{{{\left( {\sqrt[3]{a} + \sqrt[3]{b}} \right)}^2}}}{{\sqrt[3]{{ab}}}}\\
= \left( {\sqrt[3]{a} + \sqrt[3]{b}} \right).\frac{{\sqrt[3]{{ab}}}}{{{{\left( {\sqrt[3]{a} + \sqrt[3]{b}} \right)}^2}}}\\
= \frac{{\sqrt[3]{{ab}}}}{{\sqrt[3]{a} + \sqrt[3]{b}}}
\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved