Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton
Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton

Giải bài 2.27 trang 38 Chuyên đề học tập Toán 10 – Kết nối tri thức

Đề bài

Tìm giá trị lớn nhất trong các giá trị

\(C_n^0,C_n^1,C_n^2,...,C_n^n\)

Áp dụng: Tìm hệ số lớn nhất của khai triển \({(a + b)^n}\) biết rằng tổng các hệ số của khai triển bằng 4096.

Lời giải chi tiết

Với \(n = 1\) ta có \(C_1^0 = C_1^1 = 1.\)

Với \(n \ge 2\)

Gọi \(C_n^k(0 < k < n)\) là giá trị lớn nhất.

Khi đó: \(\left\{ \begin{array}{l}C_n^k \ge C_n^{k - 1}\;(1)\\C_n^k \ge C_n^{k + 1}\;(2)\end{array} \right.\)

\(\begin{array}{l}(1) \Leftrightarrow \frac{{n!}}{{k!\left( {n - k} \right)!}} \ge \frac{{n!}}{{(k - 1)!\left( {n + 1 - k} \right)!}}\\ \Leftrightarrow \frac{1}{k} \ge \frac{1}{{n + 1 - k}} \Leftrightarrow n + 1 - k \ge k\\ \Leftrightarrow k \le \frac{{n + 1}}{2}\end{array}\)

\(\begin{array}{l}(2) \Leftrightarrow \frac{{n!}}{{k!\left( {n - k} \right)!}} \ge \frac{{n!}}{{(k + 1)!\left( {n - 1 - k} \right)!}}\\ \Leftrightarrow \frac{1}{{n - k}} \ge \frac{1}{{k + 1}} \Leftrightarrow k + 1 \ge n - k\\ \Leftrightarrow k \ge \frac{{n - 1}}{2}\end{array}\)

Kết hợp ta được \(\frac{{n - 1}}{2} \le k \le \frac{{n + 1}}{2}\)

+ Nếu \(n = 2m \Rightarrow \frac{{2m - 1}}{2} \le k \le \frac{{2m + 1}}{2} \Rightarrow k = m\)

+ Nếu \(n = 2m + 1 \Rightarrow \frac{{2m}}{2} \le k \le \frac{{2m + 2}}{2} \Rightarrow k = m;k = m + 1\)

Áp dụng:

Ta có tổng các hệ số của khai triển \({(a + b)^n}\) là

\(C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = {2^n}\)

\( \Rightarrow {2^n} = 4096 = {2^{12}} \Rightarrow n = 12\)

Khi đó hệ số lớn nhất của khai triển \({(a + b)^{12}}\) là \(C_{12}^6.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved