Đề bài
Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc \(X\) và gia súc \(Y\) để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại \(X\) là 250 nghìn đồng, giá một bao loại \(Y\) là 200 nghìn đồng. Mỗi bao loại \(X\) chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C. Mỗi bao loại \(Y\) chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C. Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc \(X\) và \(Y\) sao cho hỗn hợp thu được tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C.
A. \(1,95\) triệu đồng.
B. \(4,5\) triệu đồng.
C. \(1,85\) triệu đồng.
D. \(1,7\) triệu đồng.
Phương pháp giải - Xem chi tiết
- Viết hệ bất phương trình từ bài toán trên
- Xác định miền nghiệm của hệ bất phương trình đó
- Viết biểu thức biểu thị chi phí để mua hai loại thức ăn gia súc loại \(X\) và \(Y\)
- Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc loại \(X\) và \(Y\) từ miền nghiệm vừa tìm được.
Lời giải chi tiết
Số lượng chất dinh dưỡng A cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + y \ge 12.\)
Số lượng chất dinh dưỡng B cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + 9y \ge 36.\)
Số lượng chất dinh dưỡng C cần dùng để tạo thành hai loại thức ăn gia súc \(X\) và \(Y\) là: \(2x + 3y \ge 24.\)
Từ đó, ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{2x + y \ge 12.}\\{2x + 9y \ge 36.}\\{2x + 3y \ge 24.}\end{array}} \right.\)
Miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ \(d:x = 0\) chứa điểm \(\left( {1;0} \right).\)
Miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_1}:y = 0\) chứa điểm \(\left( {0;1} \right).\)
Miền nghiệm của bất phương trình \(2x + y \ge 12\) là nửa mặt phẳng bờ \({d_2}:2x + y = 12\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(2x + 9y \ge 36\) là nửa mặt phẳng bờ \({d_3}:2x + 9y = 36\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(2x + 3y \ge 24\) là nửa mặt phẳng bờ \({d_4}:2x + 3y = 24\) không chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của hệ bất phương trình là: miền không bị gạch với các đỉnh \(A\left( {18;0} \right),\) \(B\left( {9;2} \right),\) \(C\left( {3;6} \right),\) \(D\left( {0;12} \right).\)
\(F\left( {3;6} \right) = 250.3 + 200.6 = 1950,\,\,F\left( {0;12} \right) = 250.0 + 200.12 = 2400.\)
Vậy chi phí nhỏ nhất để mua hai loại thức ăn gia súc loại \(X\) và \(Y\) là: \(F\left( {3;6} \right) = 1950.\)
Chọn A.
Review (Units 7 - 8)
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Phần 3. Sinh học vi sinh vật và virus
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 10
Vocabulary Builder
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10