Đề bài
Tổng các giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) = x + 5y\) với \(\left( {x;y} \right)\) thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 2 \le y \le 2}\\{x + y \le 4}\\{y - x \le 4}\end{array}} \right.\) là:
A. \( - 20.\)
B. \(-4.\)
C. \(28.\)
D. \( 16.\)
Phương pháp giải - Xem chi tiết
- Vẽ các bất phương trình trên cùng một mặt phẳng tọa độ \(Oxy.\)
- Xác định miền nghiệm của bất phương trình trên.
- Tìm tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức dựa vào miền nghiệm vừa xác định được.
Lời giải chi tiết
Miền nghiệm của bất phương trình \( - 2 \le y \le 2\) là miền nằm giữa hai đường thẳng \(d:y = - 2\) và \({d_1}:y = 2\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(x + y \le 4\) là nửa mặt phẳng bờ \({d_2}:x + y = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của bất phương trình \(y - x \le 4\) là nửa mặt phẳng bờ \({d_3}:y - x = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)
Miền nghiệm của hệ bất phương trình trên là hình thang cân \(ABCD\) với \(A\left( { - 2;2} \right),\) \(B\left( {2;2} \right),\) \(C\left( {6; - 2} \right),\) \(D\left( { - 6; - 2} \right).\)
Ta có: \(F\left( { - 2;2} \right) = - 2 + 5.2 = 8,\,\,F\left( {2;2} \right) = 2 + 5.2 = 12,\)
\(F\left( {6; - 2} \right) = 6 + 5\left( { - 2} \right) = - 4,\,\,F\left( { - 6; - 2} \right) = - 6 + 5\left( { - 2} \right) = - 16.\)
\( \Rightarrow \) giá trị lớn nhất của \(F\) là: \(F\left( {2;2} \right) = 12,\) giá trị nhỏ nhất của \(F\) là: \(F\left( { - 6; - 2} \right) = - 16.\)
Tổng giá trị lớn nhất và giá trị nhỏ nhất của \(F\) là: \(12 + \left( { - 16} \right) = - 4.\)
Chọn B.
Chương 2. Bảng tuần hoàn các nguyên tố hóa học và định luật tuần hoàn
Soạn Văn 10 Cánh Diều tập 1 - siêu ngắn
Chương 11: Phát triển bền vững và tăng trưởng xanh
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 10
Chủ đề 2. Lực và chuyển động
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10