Đề bài
Chứng minh rằng với mọi số tự nhiên n, ta có \({10^{2n + 1}} + 1\) chia hết cho 11.
Lời giải chi tiết
Ta chứng minh bằng phương pháp quy nạp
Với \(n = 0\) ta có \({10^1} + 1 \vdots 11\)
Vậy khẳng định đúng với \(n = 0\)
Giải sử khẳng định đúng với \(n = k\) tức là ta có \({10^{2k + 1}} + 1\) chia hết cho 11
Ta chứng minh (3) đúng với \(n = k + 1\) tức là chứng minh \({10^{2k + 3}} + 1\) chia hết cho 11
Thật vậy, ta có
\(\begin{array}{l}{10^{2k + 3}} + 1 = {10^{2k + 1}}.100 + 1 = ({10^{2k + 1}} + 1).100 + 1 - 100\\ = ({10^{2k + 1}} + 1).100 + 99\; \vdots 11\end{array}\)
Vì \({10^{2k + 1}} + 1 \vdots 11,\;99 \vdots 11.\)
Vậy khẳng định đúng với mọi số tự nhiên n.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 10
Chương 6: Sinh quyển
Đề thi giữa kì 1
Chương 11. Phát triển bền vững và tăng trưởng xanh
Phần mở đầu
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10