1. Nội dung câu hỏi
Cho tứ diện \(ABCD\). Gọi \(G\) là trọng tâm của tam giác \(ACD\), điểm \(M\) nằm trên cạnh \(AB\) sao cho \(AM = 2MB\). Đường thẳng \(MG\) song song với mặt phẳng:
A. \(\left( {ACD} \right)\)
B. \(\left( {ABD} \right)\)
C. \(\left( {BCD} \right)\)
D. \(\left( {ABC} \right)\)
2. Phương pháp giải
Sử dụng dấu hiệu nhận biết đường thẳng song song với mặt phẳng.
3. Lời giải chi tiết
Do \(AM = 2MB \Rightarrow \frac{{AM}}{{AB}} = \frac{2}{3}\).
Gọi \(E\) là trung điểm của \(CD\). Do \(G\) là trọng tâm tam giác \(ACD\), ta suy ra ba điểm \(A\), \(G\), \(E\) thẳng hàng và \(\frac{{AG}}{{AE}} = \frac{2}{3}\).
Tam giác \(ABE\) có \(\frac{{AM}}{{AB}} = \frac{{AG}}{{AE}}\) nên theo định lí Thales đảo, \(GM\parallel BE\).
Mà \(BE \subset \left( {BCD} \right)\), ta suy ra \(GM\parallel \left( {BCD} \right)\).
Đáp án đúng là C.
CHƯƠNG 2: NITƠ - PHOTPHO
Chuyên đề 3: Đọc, viết và giới thiệu về một tác giả văn học
Unit 8: Becoming independent
Chủ đề 8: Một số quyền dân chủ cơ bản của công dân
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11