PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

Bài 2.2 phần bài tập bổ sung trang 26 SBT toán 8 tập 1

Đề bài

Biến đổi mỗi phân thức sau thành phân thức có mẫu thức  \({x^2} - 9\)

\(\displaystyle {{3x} \over {x + 3}}\); \(\displaystyle {{x - 1} \over {x - 3}}\) ; \({x^2} + 9\)

Phương pháp giải - Xem chi tiết

- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác đa thức không thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A.M}{B.M}\) ( \(M\) là một đa thức khác đa thức \(0\))

- Nếu chia cả tử và mẫu của một đa thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.

\( \dfrac{A}{B}= \dfrac{A : N}{B : N}\) ( \(N\) là một nhân tử chung)

Lời giải chi tiết

Ta có \({x^2} - 9 = \left( {x + 3} \right)\left( {x - 3} \right)\)

\(\displaystyle {{3x} \over {x + 3}} = {{3x\left( {x - 3} \right)} \over {\left( {x + 3} \right)\left( {x - 3} \right)}} \)\(\,\displaystyle= {{3{x^2} - 9x} \over {{x^2} - 9}}\)

\(\displaystyle{{x - 1} \over {x - 3}} = {{\left( {x - 1} \right)\left( {x + 3} \right)} \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)\(\,\displaystyle  = {{{x^2} + 2x - 3} \over {{x^2} - 9}}  \)

\(\displaystyle {x^2} + 9 = {{\left( {{x^2} + 9} \right)\left( {{x^2} - 9} \right)} \over {{x^2} - 9}} \)\(\,\displaystyle = {{{x^4} - 81} \over {{x^2} - 9}} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved