Bài 2.17 trang 61 SBT hình học 12

Đề bài

Cho mặt cầu tâm O bán kính r. Gọi (α) là mặt phẳng cách tâm O một khoảng h (0 < h < r) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng (α)  cắt mặt cầu tại một điểm B. Gọi CD là đường kính di động của (C)

a) Chứng minh các tổng AD2 + BC2 và AC2 + BD2 có giá trị không đổi.

b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất?

c) Tìm tập hợp các điểm H, hình chiếu của B trên CD khi CD chuyển động trên đường tròn (C).

Phương pháp giải - Xem chi tiết

- Chứng minh AD2+BC2=AC2+BD2=4R2

- Viết công thức tính diện tích tam giác BCD và suy ra GTLN.

- Nhận xét: H luôn luôn nhìn đọan thẳng AI dưới một góc vuông, từ đó suy ra quỹ tích.

Lời giải chi tiết

a) Tam giác ADC vuông tại A nên AD2 = DC2 – AC2  (1)

Tam giác ABC vuông tại A nên  BC2 = AC2 + AB2  (2)

Từ (1) và (2) ta suy ra AD2 + BC2 = DC2 + AB2  (3)

Ta lại có:

AC2 = DC2 – AD2   và BD2 = AD2 + AB2   (4)

DC2 = 4(r2 – h2)   , AB2 = 4h2   (5)

Từ (4) và (5) ta có:

AC2 + BD2 =DC2 + AB2 = 4(r2 – h2) + 4h2 = 4r2  (6)

Từ (3) và (6) ta có: AD2 + BC2 = AC2 + BD2(không đổi)

b) Gọi H là hình chiếu vuông góc của B lên CD.

Diện tích tam giác BCD bằng SΔBCD=12BH.DC

Ta thấy, BHBI không đổi nên SBCD đạt GTLN khi BH lớn nhất và bằng BI.

Tức là BIDC DC(ABI)DCAI

Vậy diện tích tam giác BCD lớn nhất khi AI CD.

c) Ta có

{ABCDBHCD CD(ABH)CDAH

AHI^=900

Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông.

Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng (α).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved