1. Nội dung câu hỏi
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5x + 2}}{{3x + 1}}\)
b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 3}}{{3{x^2} + 2x + 5}}\)
c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}}\)
e) \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 8x + 6}}{{{x^2} - 1}}\)
g) \(\mathop {\lim }\limits_{x \to - 3} \frac{{ - {x^2} + 2x + 15}}{{{x^2} + 4x + 3}}\)
2. Phương pháp giải
Sử dụng các định lí về giới hạn hàm số.
3. Lời giải chi tiết
a) Ta có:\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5x + 2}}{{3x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( { - 5 + \frac{2}{x}} \right)}}{{x\left( {3 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 5 + \frac{2}{x}}}{{3 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to - \infty } \left( { - 5} \right) + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x}}}{{\mathop {\lim }\limits_{x \to - \infty } 3 + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x}}}\)
\( = \frac{{ - 5 + 0}}{{3 + 0}} = \frac{{ - 5}}{3}\)
b) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 3}}{{3{x^2} + 2x + 5}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}\left( {\frac{{ - 2}}{x} + \frac{3}{{{x^2}}}} \right)}}{{{x^2}\left( {3 + \frac{2}{x} + \frac{5}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{ - 2}}{x} + \frac{3}{{{x^2}}}}}{{3 + \frac{2}{x} + \frac{5}{{{x^2}}}}}\)
\( = \frac{{\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2}}{x} + \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{{x^2}}}}}{{\mathop {\lim }\limits_{x \to - \infty } 3 + \mathop {\lim }\limits_{x \to - \infty } \frac{2}{x} + \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{{x^2}}}}} = \frac{{0 + 0}}{{3 + 0 + 0}} = 0\).
c) Ta có:
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2}\left( {9 + \frac{3}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {9 + \frac{3}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9 + \frac{3}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right)}}\)
Do \(\mathop {\lim }\limits_{x \to + \infty } \left( {9 + \frac{3}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to + \infty } 9 + \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{{x^2}}} = 9 + 0 = 9\), nên \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} = \sqrt 9 = 3\).
Mặt khác, \(\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 1 + \mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 1 + 0 = 1\).
Suy ra \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to + \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to + \infty } \left( {1 + \frac{1}{x}} \right)}} = \frac{3}{1} = 3\).
d) Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2}\left( {9 + \frac{3}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( { - x} \right)\sqrt {9 + \frac{3}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{{\sqrt {9 + \frac{3}{{{x^2}}}} }}{{1 + \frac{1}{x}}}} \right) = - \frac{{\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right)}}\)
Do \(\mathop {\lim }\limits_{x \to - \infty } \left( {9 + \frac{3}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to - \infty } 9 + \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{{x^2}}} = 9 + 0 = 9\), nên \(\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} = \sqrt 9 = 3\).
Mặt khác, \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right) = \mathop {\lim }\limits_{x \to - \infty } 1 + \mathop {\lim }\limits_{x \to - \infty } \frac{1}{x} = 1 + 0 = 1\).
Suy ra \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} + 3} }}{{x + 1}} = - \frac{{\mathop {\lim }\limits_{x \to - \infty } \sqrt {9 + \frac{3}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to - \infty } \left( {1 + \frac{1}{x}} \right)}} = - \frac{3}{1} = - 3\).
e) Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{2{x^2} - 8x + 6}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {2x - 6} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{2x - 6}}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to 1} 2x - \mathop {\lim }\limits_{x \to 1} 6}}{{\mathop {\lim }\limits_{x \to 1} x + \mathop {\lim }\limits_{x \to 1} 1}}\)
\( = \frac{{2.1 - 6}}{{1 + 1}} = - 2\).
f) Ta có: \(\mathop {\lim }\limits_{x \to - 3} \frac{{ - {x^2} + 2x + 15}}{{{x^2} + 4x + 3}} = \mathop {\lim }\limits_{x \to - 3} \frac{{\left( {x + 3} \right)\left( {5 - x} \right)}}{{\left( {x + 3} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to - 3} \frac{{5 - x}}{{x + 1}} = \frac{{\mathop {\lim }\limits_{x \to - 3} 5 - \mathop {\lim }\limits_{x \to - 3} x}}{{\mathop {\lim }\limits_{x \to - 3} x + \mathop {\lim }\limits_{x \to - 3} 1}}\)
\( = \frac{{5 - \left( { - 3} \right)}}{{\left( { - 3} \right) + 1}} = - 4\).
HÌNH HỌC - TOÁN 11
SGK Ngữ văn 11 - Chân trời sáng tạo tập 2
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Skills (Units 3 - 4)
Chủ đề 6. Lịch sử bảo vệ chủ quyền, các quyền và lợi ích hợp pháp của Việt Nam ở biển Đông
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11