PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 21 trang 158 SBT toán 8 tập 1

Đề bài

Cho hình bình hành \(ABCD\) \((h. 183).\) Từ \(A\) và \( C\) kẻ \(AH\) và \(CK\) vuông góc với đường chéo \(BD.\) Chứng minh rằng hai đa giác \(ABCH\) và \(ADCK\) có cùng diện tích.

Phương pháp giải - Xem chi tiết

Chứng minh các tam giác bằng nhau để có:

\({S_{ABC}} = {S_{CDA}}\)   

\({S_{AHC}} = {S_{CKA}}\)

Suy ra: \({S_{ABC}} + {S_{AHC}} = {S_{CDA}} + {S_{CKA}}\)

Hay \({S_{ABCH}} = {S_{ADCK}}\)

Lời giải chi tiết

Xét \(∆ ABC\) và \(∆ CDA\) có: 

\(AC\) chung

\(AB = CD\) (Vì \(ABCD\) là hình bình hành)

\(BC = DA\) (Vì \(ABCD\) là hình bình hành)

Suy ra \(∆ ABC = ∆ CDA \,(c.c.c)\)

\( \Rightarrow {S_{ABC}} = {S_{CDA}}\)     \((1)\)

Gọi O là giao điểm của hai đường chéo AC và BD.

\(ABCD\) là hình bình hành nên \(OA = OC\) (tính chất hình bình hành)

Xét hai tam giác vuông \(AOH\) và \(CKO\) có:

\(OA = OC\) (cmt)

\(\widehat {AOH} = \widehat {COK}\) (đối đỉnh)

\( \Rightarrow \Delta AOH = \Delta COK\) (cạnh huyền-góc nhọn)

\( \Rightarrow AH = CK\) (hai cạnh tương ứng)

Mặt khác: \(AH,\, CK\) cùng vuông góc với \(BD\) nên \(AH // CK\)

Tứ giác \(AHCK\) có \(AH = CK\) (cmt) và \(AH //CK\) (cmt) nên \(AHCK\) là hình bình hành. 

Do đó: \(AK = CH\) (tính chất hình bình hành)

Xét \(∆ AHC\) và \(∆ CKA\) có:

\(AC\) chung

\(CH = AK\) (cmt)

\(AH = CK\) (cmt)

\( \Rightarrow \) \(∆ AHC = ∆ CKA \,(c.c.c)\)

\( \Rightarrow {S_{AHC}} = {S_{CKA}}\)    \((2)\)

Từ \((1)\) và \((2)\) suy ra:

\({S_{ABC}} + {S_{AHC}} = {S_{CDA}} + {S_{CKA}}\)

Hay \({S_{ABCH}} = {S_{ADCK}}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved