PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 2.1, 2.2 phần bài tập bổ sung trang 8 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 2.1
Bài 2.2
Lựa chọn câu hỏi để xem giải nhanh hơn
Bài 2.1
Bài 2.2

Bài 2.1

Bài 2.1

Không vẽ đồ thị, hãy giải thích vì sao các hệ phương trình sau có nghiệm duy nhất:

\(a)\left\{ {\matrix{
{3x = 6} \cr 
{x - 3y = 2} \cr} } \right.\)

\(b)\left\{ {\matrix{
{3x + 5y = 15} \cr 
{2y = - 7} \cr} } \right.\)

\(c)\left\{ {\matrix{
{3x = 6} \cr 
{2y = - 7} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Cho hệ hai phương trình bậc nhất hai ẩn:

\((I) \ \left\{ {\matrix{
{ax + by = c} \  (d)\cr 
{a'x +b'y = c'} \  (d') \cr} } \right.\)

+ Nếu \((d)\) cắt \((d')\) thì hệ \((I)\) có một nghiệm duy nhất.

+ Nếu \((d)\) song song với \((d')\) thì hệ \((I)\) vô nghiệm. 

+ Nếu \((d)\) trùng với \((d')\) thì hệ \((I)\) có vô số nghiệm.

Lời giải chi tiết:

\(a)\left\{ {\matrix{
{3x = 6} \cr 
{x - 3y = 2} \cr} \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{y = \displaystyle{1 \over 3}x - {2 \over 3}} \cr} } \right.} \right.\)

Đường thẳng \(x = 2\) song song với trục tung, đường thẳng \(y = \displaystyle{1 \over 3}x - {2 \over 3}\) cắt trục tung nên hai đường thẳng trên cắt nhau. Vậy hệ phương trình đã cho có nghiệm duy nhất.

\(b)\left\{ {\matrix{
{3x + 5y = 15} \cr 
{2y = - 7} \cr} } \right.\)   \(\Leftrightarrow \left\{ {\matrix{
{y = \displaystyle- {3 \over 5}x + 3} \cr 
{y=\displaystyle- {7 \over 2}} \cr} }  \right.\)

Đường thẳng \(y=\displaystyle- {7 \over 2}\) song song với trục hoành, đường thẳng \(y = \displaystyle - {3 \over 5}x + 3\) cắt trục hoành nên hai đường thẳng trên cắt nhau. Vậy hệ phương trình đã cho có nghiệm duy nhất.

\(c)\left\{ {\matrix{
{3x = 6} \cr 
{2y = - 7} \cr} } \right.\) \(\Leftrightarrow \left\{ {\matrix{
{x = 2} \cr 
{y = \displaystyle- {7 \over 2} } \cr} } \right.\)

Đường thẳng \(x =2\) song song với trục tung, đường thẳng \( y=\displaystyle- {7 \over 2} \) cắt trục tung nên hai đường thẳng trên cắt nhau. Vậy hệ phương trình đã cho có nghiệm duy nhất.

Bài 2.2

Bài 2.2

Những hệ phương trình nào sau đây vô nghiệm, những hệ nào có vô số nghiệm?

\(a)\left\{ {\matrix{
{2x + 0y = 5} \cr 
{4x + 0y = 7} \cr} } \right.\)

\(b)\left\{ {\matrix{
{2x + 0y = 5} \cr 
{4x + 0y = 10} \cr} } \right.\)

\(c)\left\{ {\matrix{
{0x + 3y = - 8} \cr 
{0x - 21y = 56} \cr} } \right.\) 

\(d)\left\{ {\matrix{
{0x + 3y = - 8} \cr 
{0x - 21y = 50} \cr} } \right.\)

Phương pháp giải:

Sử dụng:

- Cho hệ hai phương trình bậc nhất hai ẩn:

\((I) \ \left\{ {\matrix{
{ax + by = c} \  (d)\cr 
{a'x +b'y = c'} \  (d') \cr} } \right.\)

+ Nếu \((d)\) cắt \((d')\) thì hệ \((I)\) có một nghiệm duy nhất.

+ Nếu \((d)\) song song với \((d')\) thì hệ \((I)\) vô nghiệm. 

+ Nếu \((d)\) trùng với \((d')\) thì hệ \((I)\) có vô số nghiệm.

Lời giải chi tiết:

\(a)\left\{ {\matrix{
{2x + 0y = 5} \cr 
{4x + 0y = 7} \cr}  \Leftrightarrow \left\{ {\matrix{
{x = \displaystyle{5 \over 2}} \cr 
{x = \displaystyle{7 \over 4}} \cr} } \right.} \right.\)

Đường thẳng \(x = \displaystyle{5 \over 2}\) song song với trục tung, đường thẳng \(x = \displaystyle{7 \over 4}\) cũng song song với trục tung nên chúng  song song với nhau (vì \(\dfrac{5}2\ne \dfrac{7}4)\)

Vậy hệ phương trình đã cho vô nghiệm. 

\(b)\) Ta có \(2x + 0y = 5 \Leftrightarrow x =  \displaystyle {5 \over 2}\);

\(4x + 0y = 10 \Leftrightarrow x =  \displaystyle {5 \over 2}\)

Do đó đường thẳng \(2x + 0y = 5\) và đường thẳng \(4x + 0y = 10\) trùng nhau.

Vậy hệ phương trình đã cho có vô số nghiệm.

\(c)\) Ta có \(0x + 3y =  - 8 \Leftrightarrow y =  \displaystyle -{8 \over 3}\);

\(0x - 21y = 56  \Leftrightarrow y =  \displaystyle -{8 \over 3}\)

Do đó đường thẳng \(0x + 3y =  - 8 \) và đường thẳng \(0x - 21y = 56\) trùng nhau. Vậy hệ phương trình đã cho có vô số nghiệm.

\(d)\left\{ {\matrix{
{0x + 3y =  - 8} \cr 
{0x - 21y = 50} \cr}  \Leftrightarrow \left\{ {\matrix{
{y = -\displaystyle{8 \over 3}} \cr 
{y = -\displaystyle{50 \over 21}} \cr} } \right.} \right.\)

Đường thẳng  \(y =  - \displaystyle{8 \over 3}\) và đường thẳng \(y =- \displaystyle{50 \over 21}\) đều song song với trục hoành nên chúng song song với nhau. Vậy hệ phương trình đã cho vô nghiệm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved