1. Nội dung câu hỏi
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 1} \left( { - 4{x^2} + 3x + 1} \right)\)
b) \(\mathop {\lim }\limits_{x \to - 1} \frac{{ - 4x + 1}}{{{x^2} - x + 3}}\)
c) \(\mathop {\lim }\limits_{x \to 2} \sqrt {3{x^2} + 5x + 4} \)
d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3 + \frac{4}{x}}}{{2{x^2} + 3}}\)
e) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 3}}{{x - 2}}\)
g) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{5}{{x + 2}}\)
2. Phương pháp giải
Sử dụng các định lí về giới hạn hàm số.
3. Lời giải chi tiết
a) Ta có \(\mathop {\lim }\limits_{x \to - 1} \left( { - 4{x^2} + 3x + 1} \right) = \mathop {\lim }\limits_{x \to - 1} \left( { - 4{x^2}} \right) + \mathop {\lim }\limits_{x \to - 1} 3x + \mathop {\lim }\limits_{x \to - 1} 1 = - 4 + \left( { - 3} \right) + 1 = - 6\)
b) Ta có \(\mathop {\lim }\limits_{x \to - 1} \frac{{ - 4x + 1}}{{{x^2} - x + 3}} = \frac{{\mathop {\lim }\limits_{x \to - 1} \left( { - 4x} \right) + \mathop {\lim }\limits_{x \to - 1} 1}}{{\mathop {\lim }\limits_{x \to - 1} {x^2} + \mathop {\lim }\limits_{x \to - 1} \left( { - x} \right) + \mathop {\lim }\limits_{x \to - 1} 3}} = \frac{{4 + 1}}{{1 + 1 + 3}} = 1\)
c) Xét \(\mathop {\lim }\limits_{x \to 2} \left( {3{x^2} + 5x + 4} \right) = \mathop {\lim }\limits_{x \to 2} 3{x^2} + \mathop {\lim }\limits_{x \to 2} 5x + \mathop {\lim }\limits_{x \to 2} 4 = {3.2^2} + 5.2 + 4 = 26\)
Suy ra \(\mathop {\lim }\limits_{x \to 2} \sqrt {3{x^2} + 5x + 4} = \sqrt {26} \).
d) Ta có:\(\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3 + \frac{4}{x}}}{{2{x^2} + 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2}\left( {\frac{{ - 3}}{{{x^2}}} + \frac{4}{{{x^3}}}} \right)}}{{{x^2}\left( {2 + \frac{3}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{{ - 3}}{{{x^2}}} + \frac{4}{{{x^3}}}}}{{2 + \frac{3}{{{x^2}}}}}\)
\( = \frac{{\mathop {\lim }\limits_{x \to - \infty } \frac{{ - 3}}{{{x^2}}} + \mathop {\lim }\limits_{x \to - \infty } \frac{4}{{{x^3}}}}}{{\mathop {\lim }\limits_{x \to - \infty } 2 + \mathop {\lim }\limits_{x \to - \infty } \frac{3}{{{x^2}}}}} = \frac{{0 + 0}}{{2 + 0}} = 0\)
e) Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 3}}{{x - 2}} = - \infty \)
f) Ta có \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \frac{5}{{x + 2}} = - \infty \)
Chương IV. Dòng điện. Mạch điện
Chủ đề 2: Kĩ thuật di chuyển
Unit 7: Things that Matter
Review 3
SBT Ngữ văn 11 - Kết nối tri thức tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11