Đề bài
Phát biểu nào sau đây là đúng?
A. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) < {90^o}\) thì \(\overrightarrow a .\overrightarrow b < 0\)
B. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) > {90^o}\) thì \(\overrightarrow a .\overrightarrow b > 0\)
C. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) < {90^o}\) thì \(\overrightarrow a .\overrightarrow b > 0\)
D. Nếu \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \) và \((\overrightarrow a ,\overrightarrow b ) \ne {90^o}\) thì \(\overrightarrow a .\overrightarrow b < 0\)
Phương pháp giải - Xem chi tiết
Công thức tính tích vô hướng: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\)
Xét dấu \(\overrightarrow a .\overrightarrow b \) thông qua dấu của \(\cos (\overrightarrow a ,\overrightarrow b )\).
Lời giải chi tiết
Ta có: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\)
+) \((\overrightarrow a ,\overrightarrow b ) < {90^o} \Rightarrow \cos (\overrightarrow a ,\overrightarrow b ) > 0 \Leftrightarrow \overrightarrow a .\overrightarrow b > 0\)
Vậy A sai, C đúng, D sai.
+) \((\overrightarrow a ,\overrightarrow b ) > {90^o} \Rightarrow \cos (\overrightarrow a ,\overrightarrow b ) < 0 \Leftrightarrow \overrightarrow a .\overrightarrow b < 0\)
Vậy B sai.
Chọn C.
Review 2
Chủ đề 8: Rèn luyện bản thân theo định hướng nghề nghiệp
Soạn Văn 10 Kết nối tri thức tập 1 - chi tiết
Chuyên đề 3. Công nghệ vi sinh vật trong xử lí môi trường
Review (Units 5 - 6)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10