Toán 7 tập 2 - Chân trời sáng tạo

Bài 2 trang 84

Đề bài

Cho tam giác ABC vuông tại A, vẽ đường cao AH. Trên tia đối của tia HA lấy điểm M sao cho H là trung điểm của AM.

a) Chứng minh rằng tam giác ABM cân.

b) Chứng minh rằng \(\Delta ABC = \Delta MBC\)

Phương pháp giải - Xem chi tiết

a) Ta chứng minh BM = BA thông qua việc chứng minh 2 tam giác BHA và BHM bằng nhau

b) Ta chứng minh góc ABH = góc MBH sau đó chứng minh 2 tam giác đề bài yêu cầu bằng nhau theo trường hợp c-g-c

Lời giải chi tiết

 

a)      Xét \(\Delta BHA\)và\(\Delta BHM\) có :

\(\widehat {BHA} = \widehat {BHM} = {90^o}\)

BH cạnh chung

AH = HM (do M đối xứng với A qua H)

\( \Rightarrow \Delta BHA = \Delta BHM(c - g - c)\)

\( \Rightarrow AB = BM\) (cạnh tương ứng) và \(\widehat {ABH} = \widehat {MBH}\)

\( \Rightarrow \Delta ABM\) cân tại B (2 cạnh bên bằng nhau)

b)      Xét \(\Delta ABC\)và \(\Delta MBC\)ta có :

AB = BM (câu a)

\(\widehat {ABH} = \widehat {MBH}\)(câu a)

BC cạnh chung

\( \Rightarrow \Delta ABC = \Delta MBC(c - g - c)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved