Đề bài
Giải các hệ phương trình sau bằng phương pháp Gauss:
a) \(\left\{ \begin{array}{l}x - 2y + z = 3\\ - y + z = 2\\y + 2z = 1\end{array} \right.\)
b) \(\left\{ \begin{array}{l}3x - 2y - 4z = 3\\4x + 6y - z = 17\\x + 2y = 5\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x + y + z = 1\\3x - y - z = 4\\x + 5y + 5z = - 1\end{array} \right.\)
Lời giải chi tiết
a) \(\left\{ \begin{array}{l}x - 2y + z = 3\quad (1)\\ - y + z = 2\quad \quad (2)\\y + 2z = 1\quad \quad (3)\end{array} \right.\)
Cộng vế với vế của phương trình (2) với phương trình (3), giữ nguyên phương trình (1) và (2) ta được hệ:
\(\left\{ \begin{array}{l}x - 2y + z = 3\quad (1)\\ - y + z = 2\quad \quad (2)\\3z = 3\quad \quad \quad (3.1)\end{array} \right.\)
Từ phương trình (3.1) ta có \(z = 1\)
Thay \(z = 1\) vào phương trình (2) ta được \(y = - 1\)
Thay \(y = - 1\) và \(z = 1\) vào phương trình (1) ta được \(x = 0\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( {0; - 1;1} \right)\)
b) \(\left\{ \begin{array}{l}3x - 2y - 4z = 3\quad (1)\\4x + 6y - z = 17\quad (2)\\x + 2y = 5\quad \quad \quad \;\;(3)\end{array} \right.\)
Cộng vế với vế của phương trình (1) với phương trình (3), giữ nguyên phương trình (2) và (3) ta được hệ:
\(\left\{ \begin{array}{l}4x - 4z = 8\quad \quad \quad (1.1)\\4x + 6y - z = 17\quad (2)\\x + 2y = 5\quad \quad \quad \;\;(3)\end{array} \right.\)
Nhân hai vế của phương trình (1.1) với -1, cộng vế với vế của phương trình nhận được với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:
\(\left\{ \begin{array}{l}4x - 4z = 8\quad \quad (1.1)\\6y + 3z = 9\quad \quad (2)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\2y + z = 3\quad \quad (2)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\)
Cộng vế với vế của phương trình (1) với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:
\(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\x + 2y = 5\quad \;\;(2.1)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\)
Hai phương trình (2.1) và (3) giống nhau, nên có thể viết hệ phương trình thành:
\(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\x + 2y = 5\quad \;\;(2.1)\end{array} \right.\)
Từ phương trình (1.1), ta có \(x = z + 2\), thay vào phương trình (2.1) ta được \(z = - 2y + 3\), từ đó suy ra \(x = - 2y + 5\)
Vậy hệ phương trình đã cho có vô số nghiệm dạng \(( - 2y + 5;y; - 2y + 3)\) với \(y \in \mathbb{R}\).
c) \(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\3x - y - z = 4\quad (2)\\x + 5y + 5z = - 1\quad (3)\end{array} \right.\)
Nhân hai vế của phương trình (1) với -3, cộng vế với vế của phương trình nhận được với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:
\(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\ - 4y - 4z = 1\quad (2.1)\\x + 5y + 5z = - 1\quad (3)\end{array} \right.\)
Nhân hai vế của phương trình (1) với -1, cộng vế với vế của phương trình nhận được với phương trình (3), giữ nguyên phương trình (1) và (2.1) ta được hệ:
\(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\ - 4y - 4z = 1\quad (2.1)\\4y + 4z = - 2\quad (3.1)\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\4y + 4z = - 1\quad (2.1)\\4y + 4z = - 2\quad (3.1)\end{array} \right.\)
Từ phương trình (2.1) và (3.1) suy ra -1 = -2 (Vô lí)
Vậy hệ phương trình đã cho vô nghiệm.
Unit 3: Shopping
Unit 2: Adventure
Múa rối nước hiện đại soi bóng tiền nhân
Chương 7. Một số quy luật của vỏ địa lí
Chương V. Một số nền văn minh trên đất nước Việt Nam (trước 1858)
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10