Bài 1.92 trang 42 SBT giải tích 12

Đề bài

Xác định giá trị của tham số \(m\) để phương trình \(2{x^3} + 3m{x^2} - 5 = 0\) có nghiệm duy nhất.

A. \(m = \sqrt[3]{5}\)              B. \(m < \sqrt[3]{5}\)

C. \(m > \sqrt[3]{5}\)              D. \(m \in \mathbb{R}\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp hàm số:

- Xét hàm , tính đạo hàm và tìm nghiệm của đạo hàm.

- Biến luận nghiệm theo các cực trị (nếu có) của hàm số.

Lời giải chi tiết

Xét hàm \(y = 2{x^3} + 3m{x^2} - 5\) trên \(\mathbb{R}\).

Hàm số xác định và liên tục trên \(\mathbb{R}\).

Ta có: \(y' = 6{x^2} + 6mx = 6x\left( {x + m} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - m\end{array} \right.\)

+) Nếu \(m = 0\) thì \(y' = 6{x^2} \ge 0,\forall x\) nên hàm số đồng biến trên \(\mathbb{R}\).

Do đó phương trình đã cho có nghiệm duy nhất.

+) Nếu \(m \ne 0\) thì phương trình \(y' = 0\) có hai nghiệm phân biệt

\( \Rightarrow \) Hàm số có hai điểm cực trị.

Đẻ phương trình có nghiệm duy nhất thì đồ thị hàm số \(y = 2{x^3} + 3m{x^2} - 5\) có một giao điểm duy nhất với trục hoành \( \Leftrightarrow {y_{CD}}.{y_{CT}} > 0\).

Ta có: \({x_1} = 0\) \( \Rightarrow {y_1} =2.0^3 +3m.0^2 -5=  - 5\)

\({x_2} =  - m\) \( \Rightarrow {y_2} = 2.(-m)^3+3m.(-m)^2-5\) \(=-2m^3+3m^3-5={m^3} - 5\).

\({y_1}.{y_2} =  - 5\left( {{m^3} - 5} \right) > 0\) \( \Leftrightarrow {m^3} - 5 < 0 \Leftrightarrow m < \sqrt[3]{5}\).

Vậy \(m < \sqrt[3]{5}\).

Chọn B.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved