1. Nội dung câu hỏi
Quan sát đồ thị hàm số ở hình dưới đây và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).
2. Phương pháp giải
Từ đồ thị, để tìm\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\), ta cần xác định khi \(x\) dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu. Tương tự với \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).
3. Lời giải chi tiết
Từ đồ thị, ta nhận thấy rằng:
+ Khi \(x\) dần tới dương vô cực thì \(f\left( x \right)\) dần tới 1. Như vậy \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\).
+ Khi \(x\) dần tới âm vô cực thì \(f\left( x \right)\) dần tới 1. Như vậy \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 1\).
+ Khi \(x\) dần tới \( - 2\) về bên phải thì \(f\left( x \right)\) dần tới âm vô cực. Như vậy \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) = - \infty \).
+ Khi \(x\) dần tới \( - 2\) về bên trái thì \(f\left( x \right)\) dần tới dương vô cực. Như vậy \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) = + \infty \).
Phần 2. Địa lí khu vực và quốc gia
Chuyên đề 3. Mở đầu điện tử học
Bài 1. Sự tương phản về trình độ phát triển kinh tế - xã hội của các nhóm nước. Cuộc cách mạng khoa học và công nghệ hiện đại - Tập bản đồ Địa lí 11
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Phần hai: Giáo dục pháp luật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11