PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 19 trang 105 SBT toán 9 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có cạnh \(AB = 6\)cm và \(AC = 8\)cm. Các đường phân giác trong và ngoài của góc \(B\) cắt đường thẳng \(AC\) lần lượt tại \(M\) và \(N\). Tính các đoạn thẳng \(AM\) và \(AN\).   

Phương pháp giải - Xem chi tiết

+ Tính chất đường phân giác:

- Đường phân giác trong của một tam giác chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn ấy. 

Xét tam giác ABC có AM là phân giác của góc trong \(\widehat {BAC}\).

Ta có hệ thức: \(\dfrac{{AB}}{{AC}} = \dfrac{{AM}}{{MC}}\)

 - Đường phân giác ngoài tại một đỉnh của tam giác chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.

+ Tính chất tỉ lệ thức:

\(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}.\) 

Lời giải chi tiết

 

Vì \(BM\) là đường phân giác của góc \(B\) nên ta có:  

\(\dfrac{{MA}}{{MC}} = \dfrac{{AB}}{{BC}}\)\( \Rightarrow \dfrac{{MA}}{{MA + MC}} = \dfrac{{AB}}{{AB + BC}}\) (tính chất tỉ lệ thức)

Suy ra: \(MA = \dfrac{{AB.(MA + MC)}}{{AB + BC}}\)\(= \dfrac{{AB.AC}}{{AB + BC}}\)\( = \dfrac{{6.8}}{{6 + 10}} = \dfrac{{48}}{{16}} = 3\left( {cm} \right)\)

Vì \(BM, BN\) lần lượt là đường phân giác của góc  trong và góc ngoài tại đỉnh \(B\) nên ta có: \(BM \bot BN\)

Suy ra tam giác \(BMN\) vuông tại \(B\). 

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: \(A{B^2} = AM.AN\)

 Suy ra: \(AN = \dfrac{{A{B^2}}}{{AM}} = \dfrac{{{6^2}}}{ 3} = \dfrac{{36}}{ 3} = 12\left( {cm} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved