Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp - Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, quạt tròn
Ôn tập chương III. Góc với đường tròn
Đề bài
Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\). Tiếp tuyến \(A\) của đường tròn \((O’)\) cắt đường tròn \((O)\) tại điểm thứ hai \(P\). Tia \(PB\) cắt đường tròn \((O’)\) tại \(Q\). Chứng minh đường thẳng \(AQ\) song song với tiếp tuyến tại \(P\) của đường tròn \((O)\).
Phương pháp giải - Xem chi tiết
Sử dụng : Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.
Lời giải chi tiết
Đối với đường tròn \(\left( O \right)\) ta có
\(\widehat {PAB} = \widehat {BPx}\) vì \(\widehat {PAB}\) là góc nội tiếp chắn cung \(PB\) và \(\widehat {BPx}\) là góc tạo bởi tiếp tuyến và dây cung \(BP\) (1)
Đối với đường tròn \(\left( {O'} \right)\), ta có:
\(\widehat {AQB} = \widehat {PAB}\) vì \(\widehat {AQB}\) là góc nội tiếp chắn cung \(AB\) và \(\widehat {PAB}\) là góc tạo bởi tiếp tuyến và dây cung \(AB\) (2)
Vậy từ (1) và (2) \( \Rightarrow \widehat {BPx} = \widehat {ABQ}\) nên \(AQ//Px\) vì hai góc so le trong bằng nhau.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 9
Bài 14
Đề thi vào 10 môn Toán Cần Thơ
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 9
Unit 5: Wonders of Viet Nam