Giải bài 18 trang 48 SBT toán 10 - Cánh diều

Đề bài

Xác định hàm số bậc hai biết đồ thị tương ứng trong mỗi Hình 12a, 12b:

Phương pháp giải - Xem chi tiết

Xác định các hệ số a, b, c qua các đỉnh và các điểm thuộc parabol trong đồ thị đã cho

Lời giải chi tiết

Gọi hàm số bậc hai cần tìm là \(y = f\left( x \right) = a{x^2} + bx + c\)

a) Đồ thị hàm số có đỉnh là \(I\left( {1; - 4} \right)\) và đi qua điểm \(\left( { - 1;0} \right),\left( {3;0} \right)\), suy ra:\(\left\{ \begin{array}{l}x = \frac{{ - b}}{{2a}} = 1\\a{\left( { - 1} \right)^2} + b\left( { - 1} \right) + c = 0\\a{.3^2} + b.3 + c = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b =  - 2a\\a - b + c = 0\\9a + 3b + c = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 1\\b =  - 2\\c =  - 3\end{array} \right.\)

Vậy parabol đó là \(y = {x^2} - 2x - 3\)

b) Đồ thị hàm số có đỉnh là \(I\left( { - 1;2} \right)\) và đi qua điểm \(\left( {0;0} \right),\left( { - 2;0} \right)\), suy ra:\(\left\{ \begin{array}{l}x = \frac{{ - b}}{{2a}} =  - 1\\a{.0^2} + b.0 + c = 0\\a.{\left( { - 2} \right)^2} + b.\left( { - 2} \right) + c = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 2a\\c = 0\\4a - 2b + c = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a =  - 2\\b =  - 4\\c = 0\end{array} \right.\)

Vậy parabol đó là \(y =  - 2{x^2} - 4x\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved