1. Nội dung câu hỏi
Chọn đẳng thức đúng trong các đẳng thức sau:
A. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{4}\)
B. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{4}\)
C. \({\sin ^4}x + {\cos ^4}x = \frac{{3 + \cos 4x}}{2}\)
D. \({\sin ^4}x + {\cos ^4}x = \frac{{3 - \cos 4x}}{2}\)
2. Phương pháp giải
Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}x\), \(B = {\cos ^2}x\).
Sử dụng công thức \(\sin 2x = 2\sin x.\cos x\), \(\cos 2x = 1 - 2{\sin ^2}x\)
3. Lời giải chi tiết
Ta có:
\(\begin{array}{l}{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x\\ \Rightarrow 1 = {\sin ^4}x + {\cos ^4}x + \frac{1}{2}{\left( {2\sin x.\cos x} \right)^2}\\ \Rightarrow 1 = {\sin ^4}x + {\cos ^4}x + \frac{1}{2}{\sin ^2}2x\\ \Rightarrow {\sin ^4}x + {\cos ^4}x = 1 - \frac{1}{2}{\sin ^2}2x\end{array}\)
Mặt khác, ta có \(\cos 4x = 1 - 2{\sin ^2}2x \Rightarrow {\sin ^2}2x = \frac{{1 - \cos 4x}}{2}\)
Suy ra \({\sin ^4}x + {\cos ^4}x = 1 - \frac{1}{2}.\frac{{1 - \cos 4x}}{2} = \frac{{3 + \cos 4x}}{4}\)
Đáp án đúng là B.
Chủ đề 3: Kĩ thuật đá bóng
Chuyên đề 11.2. Trải nghiệm, thực hành hoá học hữu cơ
Đề thi học kì 2
Chủ đề 2: Nitrogen và sulfur
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11