PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 17 trang 81 SBT toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho tam giác \(ABC.\) Các tia phân giác của các góc \(B\) và \(C\) cắt nhau ở \(I.\) Qua \(I\) kẻ đường thẳng song song với \(BC,\) cắt các cạnh \(AB\) và \(AC\) ở \(D\) và \(E.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Tìm các hình thang trong hình vẽ.

Phương pháp giải:

Sử dụng định nghĩa: Hình thang là tứ giác có hai cạnh đối song song.

Lời giải chi tiết:

Đường thẳng đi qua \(I\) song song với \(BC\) cắt \(AB\) tại \(D\) và \(AC\) tại \(E,\) ta có các hình thang sau: \(BDEC,\) \(BDIC,\) \(BIEC.\)

 

LG b

LG b

Chứng minh rằng hình thang \(BDEC\) có một cạnh đáy bằng tổng hai cạnh bên.

Phương pháp giải:

Sử dụng tính chất hai góc so le trong, tam giác cân.

Lời giải chi tiết:

\(\) \(DE // BC\) (theo cách vẽ)

\( \Rightarrow {\widehat I_1} = {\widehat B_1}\) (hai góc so le trong)

Mà \({\widehat B_1} = {\widehat B_2}\) (vì BI là phân giác góc B)

Suy ra: \({\widehat I_1} = {\widehat B_2}\)

Do đó: \(∆ BDI\) cân tại \(D\)

\(⇒ DI = DB   \;\;\; (1)\)

Ta có: \({\widehat I_2} = {\widehat C_1}\) (so le trong)

\({\widehat C_1} = {\widehat C_2}\) (vì CI là phân giác góc C)

Suy ra: \({\widehat I_2} = {\widehat C_2}\) do đó: \(∆ CEI\) cân tại \(E\)

\(⇒  IE = EC      \;\;\; \;\;\;  (2)\)

\(DE = DI + IE   \;\;\;  (3)\)

Từ \((1),\)\( (2)\) và \((3)\) suy ra: \(DE = BD + CE\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved