PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 164 trang 101 SBT Toán 8 tập 1

Đề bài

Cho đoạn thẳng AB = a. Gọi M là một điểm nằm giữa A và B. Vẽ về một phía của AB các hình vuông AMNP, BMLK có tâm theo thứ tự là C, D. Gọi I là trung điểm của CD.

a. Tính khoảng cách từ I đến AB

b. Khi điểm M di chuyển trên đoạn thẳng AB thì điểm I di chuyển trên đường nào ?

Phương pháp giải - Xem chi tiết

- Vận dụng tính chất của tam giác cân và tính chất về giao điểm hai đường chéo của hình vuông.

- Xác định khoảng cách giữa I với đoạn thẳng AB.

Lời giải chi tiết

a. Kẻ CE ⊥ AB, IH ⊥ AB, DF ⊥ AB 

⇒ CE // DF // IH (cùng vuông với AB)

Suy ra DCEF là hình thang.

Xét hình thang DCEF có: 

CE // DF // IH và IC = ID (vì I là trung điểm của CD)

Nên H là trung điểm cạnh EF

Suy ra IH là đường trung bình của hình thang DCEF

\( \Rightarrow IH = \displaystyle {{DF + CE} \over 2}\) (1)

Vì C là tâm hình vuông AMNP nên \(CA=CM\) (tính chất) và \(\widehat{ACM}=90^0\)

⇒ ∆ CAM là tam giác vuông cân tại C

Lại có CE ⊥ AM hay CE là đường cao của tam giác cân CAM

⇒ CE cũng là đường trung tuyến (tính chất tam giác cân)

⇒ CE = \(\displaystyle {1 \over 2}\)AM (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Vì D là tâm hình vuông BMLK nên \(DB=DM\) (tính chất) và \(\widehat{MDB}=90^0\)

⇒ ∆ DBM vuông cân tại D

Có DF ⊥ BM nên DF là đường cao của tam giác cân DBM

⇒ DF cũng là đường trung tuyến (tính chất tam giác cân)

⇒ DF = \(\displaystyle {1 \over 2}\)BM (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Vậy CE + DF = \(\displaystyle {1 \over 2}\)AM + \(\displaystyle {1 \over 2}\)BM

= \(\displaystyle {1 \over 2}\) (AM + BM) = \(\displaystyle {1 \over 2}\)AB = \(\displaystyle {a \over 2}\)

Từ (1) ta suy ra: 

\( \Rightarrow IH = \displaystyle {{DF + CE} \over 2}\) \(=\displaystyle {{\displaystyle {a \over 2}} \over 2} = {a \over 4}\)

b. Gọi Q là giao điểm của BL và AN

Ta có: AN ⊥ MP (2) (tính chất hình vuông APNM)

BL ⊥ MK (3) (tính chất hình vuông BMLK)

Lại có: \(\widehat {PMN} = \dfrac{1}{2}\widehat {AMN} = \dfrac{1}{2}{.90^0} = {45^0}\) (do APNM là hình vuông nên MP là phân giác góc AMN) 

\(\widehat {KMN} = \dfrac{1}{2}\widehat {BML} = \dfrac{1}{2}{.90^0} = {45^0}\) (do BMLK là hình vuông nên MK là phân giác góc BML) 

\( \Rightarrow \widehat {PMK} = \widehat {PMN} + \widehat {NMK} \)\(= {45^0} + {45^0} = {90^0}\)

Suy ra MP ⊥ MK (4)

Từ (2), (3) và (4) suy ra BL ⊥ AN

Lại có \(\widehat {QAB} = \dfrac{1}{2}\widehat {MAP} \)\(= \dfrac{1}{2}{.90^0} = {45^0}\) (do APNM là hình vuông)

⇒ ∆ QAB vuông cân tại Q cố định. 

Khi M thay đổi thì I thay đổi luôn cách đoạn thẳng AB cố định một khoảng không đổi bằng \(\displaystyle {a \over 4}\)  nên I chuyển động trên đường thẳng song song với AB, cách AB một khoảng bằng \(\displaystyle {a \over 4}\)

Khi M trùng B thì I trùng với S là trung điểm của BQ 

Khi M trùng với A thì I trùng với R là trung điểm của AQ

Vậy khi M chuyển động trên đoạn AB thì I chuyển động trên đoạn thẳng RS song song với AB, cách AB một khoảng bằng \(\displaystyle {a \over 4}\) .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved