PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 163 trang 100 SBT Toán 8 tập 1

Đề bài

Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD.

a. Tứ giác DEBF là hình gì ? Vì sao ?

b. Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm.

c. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành.

Phương pháp giải - Xem chi tiết

- Dấu hiệu nhận biết hình bình hành: Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành

- Tính chất về các cạnh và đường chéo của hình bình hành.

Lời giải chi tiết

a) Xét tứ giác DEBF: AB // CD (vì ABCD là hình bình hành) hay DF // EB

EB = \(\displaystyle {1 \over 2}\)AB (do E là trung điểm của AB)

DF = \(\displaystyle {1 \over 2}\)CD (do F là trung điểm của DC)

Mà AB=CD (do ABCD là hình bình hành)

Suy ra: EB = DF

Vậy tứ giác DEBF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

b) Gọi O là giao điểm của AC và BD

OB = OD (tính chất hình bình hành ABCD)

Vì tứ giác DEBF là hình bình hành nên EF và BD cắt nhau tại trung điểm của mỗi đường

Suy ra: EF đi qua trung điểm O của BD

Vậy AC, BD và EF cắt nhau tại O trung điểm của mỗi đoạn

c. Vì DEBF là hình bình hành nên DE//BF

Suy ra \(\widehat {MEO} = \widehat {NFO}\) (so le trong)

Xét ∆ EOM và ∆ FON:

\(\widehat {MEO} = \widehat {NFO}\) (chứng minh trên)

OE = OF (tính chất hình bình hành DEBF)

\(\widehat {MOE} = \widehat {NOF}\)  (đối đỉnh)

Do đó : \(∆ EOM = ∆ FON (g.c.g)\)\( ⇒ OM = ON\)

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved