ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 1.6 trang 13 SBT đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Chứng minh rằng \(\cos 2\left( {x + k\pi } \right) = \cos 2x,k \in Z\). Từ đó vẽ đồ thị hàm số \(y = \cos 2x\)

Phương pháp giải:

Sử dụng công thức \(\cos (\alpha  + k2\pi ) = \cos \alpha \)

Lời giải chi tiết:

\(\cos 2(x + k\pi ) = \cos (2x + k2\pi ) \) \(= \cos 2x,k \in Z\)

Vậy hàm số \(y = \cos 2x\) là hàm số chẵn, tuần hoàn, có chu kỳ \(\pi \).

Đồ thị hàm số đi qua các điểm \(\left( {0;1} \right),\left( { - \dfrac{\pi }{4};0} \right),\) \(\left( {\dfrac{\pi }{4};0} \right),\left( { - \dfrac{\pi }{2}; - 1} \right),\left( {\dfrac{\pi }{2};1} \right)\)

 

LG b

Từ đồ thị hàm số \(y = \cos 2x\) , hãy vẽ đồ thị hàm số \(y = \left| {\cos 2x} \right|\)

Phương pháp giải:

Cách dựng đồ thị hàm số \(y = \left| {f(x)} \right|\) từ đồ thị hàm số \(y = f(x)\):

+ Giữ nguyên phần đồ thị phía trên trục \(Ox\) của đồ thị hàm số \(y = f(x)\)

+ Lấy đối xứng phần đồ thị phía dưới trục \(Ox\) của đồ thị \(y = f(x)\) qua \(Ox\)

+ Xóa phần đồ thị phía dưới trục \(Ox\) của đồ thị hàm số \(y = f(x)\).

Lời giải chi tiết:

Đồ thị hàm số \(y = \left| {\cos 2x} \right|\) gồm:

+ Phần đồ thị phía trên trục \(Ox\) của đồ thị hàm số \(y = \cos 2x\)

+ Phần đồ thị có được từ việc lấy đối xứng phần đồ thị phía dưới trục \(Ox\) của đồ thị hàm số \(y = \cos 2x\).

Đồ thị hàm số \(y = \left| {\cos 2x} \right|\) là:

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved