ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 1.57 trang 41 SBT đại số và giải tích 11

Đề bài

Nghiệm của phương trình \(3(\cos x-\sin x)-\sin x\cos x=-3\) là

A. \(\dfrac{\pi}{2}+k2\pi\) và \(\pi+k2\pi\), \(k\in\mathbb{Z}\)

B. \(\pi+k2\pi\), \(k\in\mathbb{Z}\)

C. \(\dfrac{\pi}{4}+k2\pi, k\in\mathbb{Z}\)

D. \(\dfrac{\pi}{6}+k\pi, k\in\mathbb{Z}\).

Phương pháp giải - Xem chi tiết

Đặt \(t=\cos x-\sin x\)

\(=\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\) nên \(-\sqrt{2}\le t\le \sqrt{2}\)

Khi đó \(t^2={\cos}^2 x-2\cos x\sin x+{\sin}^2 x\)

\(=1-2\cos x\sin x\) từ đó rút được \(\sin x\cos x\) theo t

giải phương trình dạng \(a\sin x+b\cos x=c\)

Ta chia hai vế phương trình cho \(\sqrt{a^2+b^2}\).

Tùy và từng bài mà ta đặt \(\sin \alpha=\dfrac{a}{\sqrt{a^2+b^2}}\) và \(\cos \alpha=\dfrac{b}{\sqrt{a^2+b^2}}\) hay \(\cos \alpha=\dfrac{a}{\sqrt{a^2+b^2}}\) và \(\sin \alpha=\dfrac{b}{\sqrt{a^2+b^2}}\).

Sau đó tùy từng dạng phương trình thu được mà ta đưa về dạng \(\cos\) của một tổng hoặc \(\cos\) của một hiệu hoặc \(\sin\) của một tổng \(\sin\) của một hiệu.

Lời giải chi tiết

Đặt \(t=\cos x-\sin x\)

\(\cos x-\sin x=\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\)

Do \(-1\le\cos\left({x+\dfrac{\pi}{4}}\right)\le 1\) nên \(-\sqrt{2}\le\sqrt{2}\cos\left({x+\dfrac{\pi}{4}}\right)\le \sqrt{2}\)

Khi đó \(-\sqrt{2}\le t\le \sqrt{2}\)

Ta có \(t^2={\cos}^2 x-2\cos x\sin x+{\sin}^2 x\)

\(=1-2\cos x\sin x\)

Suy ra \(\sin x\cos x=\dfrac{1-t^2}{2}\) thay vào phương trình ta được

\(3t-\dfrac{1-t^2}{2}=-3\)

\(\Leftrightarrow 6t-1+t^2=-6\)

\(\Leftrightarrow t^2+6t+5=0\)

\( \Leftrightarrow \left[ \begin{array}{l} t=-5<-\sqrt{2}\text{(loại)}\\ t =-1\end{array} \right.\)

Với \(t=-1\Leftrightarrow \cos x-\sin x=-1\)

\(\Leftrightarrow \sqrt{2}\cos(\dfrac{\pi}{4}+x)=-1\)

\(\Leftrightarrow \cos(\dfrac{\pi}{4}+x)=\cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow \dfrac{\pi}{4}+x=\pm\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

\( \Leftrightarrow \left[ \begin{array}{l} x =\dfrac{\pi}{2}+k2\pi,k\in\mathbb{Z}\\ x=-\pi+k2\pi,k\in\mathbb{Z}\end{array} \right.\)

Vậy phương trình có nghiệm là \( x=k2\pi,k\in\mathbb{Z}\) và \( x =-\pi+k2\pi=\pi+l2\pi,k,l\in\mathbb{Z} \)

Đáp án: A.

Cách trắc nghiệm:

Xét các phương án

Phương án A có hai khả năng, nên ta xét các phương án khác đơn giản hơn.

• Với x = kπ trong phương án B, khi k = 2 thì vế trái của phương trình đã cho bằng 3, nên phương án B bị loại.

• Với x = π/4 thì cosx – sinx = 0, sinx.cosx = 1/2 nên π/4 không phải là nghiệm. Do đó phương án C bị loại.

• Với x = π/6 thì vế trái của phương trình đã cho là:

\(3\left( {\cos \frac{\pi }{6} - \sin \frac{\pi }{6}} \right) - \sin \frac{\pi }{6}\cos \frac{\pi }{6}\) \( = \frac{{3\left( {\sqrt 3  - 1} \right)}}{2} - \frac{{\sqrt 3 }}{4} \ne  - 3\) nên phương án D bị loại.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved