Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Từ một điểm \(M\) ở bên ngoài đường tròn \((O)\) ta vẽ hai tiếp tuyến \(MA, MB\) với đường tròn. Trên cung nhỏ \(AB\) lấy một điểm \(C.\) Vẽ \(CD, CE, CF\) lần lượt vuông góc với \(AB, MA, MB\). Gọi \(I\) là giao điểm của \(AC\) và \(DE\), \(K\) là giao điểm của \(BC\) và \(DF\). Chứng minh rằng:
a) Các tứ giác \(AECD,BFCD\) nội tiếp được;
b) \(CD^2=CE.CF;\)
c) Tứ giác \(ICKD\) nội tiếp được;
d) \(IK\bot \,CD\).
Phương pháp giải - Xem chi tiết
Sử dụng:
- Nếu tứ giác có tổng số đo hai góc đối diện bằng \(180^o\) thì tứ giác đó nội tiếp được đường tròn.
- Trên một đường tròn các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
Lời giải chi tiết
a) Ta có \(\widehat {AEC} + \widehat {ADC} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(AECD\) nội tiếp được.
Ta có \(\widehat {BFC} + \widehat {BDC} = {90^o} + {90^o} = {180^o}\) nên tứ giác \(BFCD\) nội tiếp được.
b) Có \(\widehat {{D_1}} = \widehat {{A_1}}\) (hai góc nội tiếp cùng chắn cung \(EC\) của đường tròn ngoại tiếp tứ giác \(AECD\)) (1)
\(\widehat {{A_1}} = \widehat {{B_1}}\) (góc giữa tia tiếp tuyến với một dây cung và góc nội tiếp cùng chắn cung \(AC\) của đường tròn tâm \(O\)) (2)
\(\widehat {{B_1}} = \widehat {{F_1}}\) (hai góc nội tiếp cùng chắn cung \(CD\) của đường tròn ngoại tiếp tứ giác \(BFCD\)) (3)
Từ (1), (2) và (3) suy ra: \(\widehat {{D_1}} = \widehat {{F_1}}\).
Có \(\widehat {{E_2}} = \widehat {{A_2}}\) (hai góc nội tiếp cùng chắn cung \(CD\) của đường tròn ngoại tiếp tứ giác \(AECD\)) (4)
\(\widehat {{B_2}} = \widehat {{A_2}}\) (góc giữa tia tiếp tuyến với một dây cung và góc nội tiếp cùng chắn cung \(BC\) của đường tròn tâm \(O\)) (5)
\(\widehat {{B_2}} = \widehat {{D_2}}\) (hai góc nội tiếp cùng chắn cung \(CF\) của đường tròn ngoại tiếp tứ giác \(BFCD\)) (6)
Từ (4), (5) và (6) suy ra: \(\widehat {{E_2}} = \widehat {{D_2}}\).
Xét \(\Delta DEC \) và \(\Delta FDC\) có:
\(\widehat {{D_1}} = \widehat {{F_1}}\) (chứng minh trên)
\(\widehat {{E_2}} = \widehat {{D_2}}\) (chứng minh trên)
\( \Rightarrow \Delta DEC \backsim \Delta FDC\) (g.g).
\( \Rightarrow \dfrac{{CD}}{{CF}} = \dfrac{{CE}}{{CD}} \Rightarrow C{D^2} = CE.CF\)
c) Tứ giác \(ICKD\) có:
\(\widehat {ICK} + \widehat {IDK} = \widehat {ICK} + \widehat {{D_1}} + \widehat {{D_2}} \)\(\,= \widehat {ICK} + \widehat {{B_1}} + \widehat {{A_2}} = {180^o}.\)
Suy ra tứ giác \(ICKD\) nội tiếp được.
d) Ta có \(\widehat {CIK} = \widehat {{D_2}}\) (hai góc nội tiếp cùng chắn cung \(CK\) của đường tròn ngoại tiếp tứ giác \(ICKD\)).
\( \Rightarrow \widehat {CIK} = \widehat {{A_2}}\), mà \(\widehat {CIK} \) và \( \widehat {{A_2}}\) ở vị trí đồng vị nên \(IK//AB\).
Mặt khác \(CD\bot AB\) (gt) nên \(CD\bot\,IK\).
Đề thi vào 10 môn Toán Quảng Trị
Đề thi vào 10 môn Toán Hà Nội
CHƯƠNG II. ĐIỆN TỪ HỌC
Đề thi vào 10 môn Văn Quảng Bình
SINH VẬT VÀ MÔI TRƯỜNG