Xác định tính chẵn lẻ của hàm số
LG a
\(y={\sin}^3 x-\tan x\)
Phương pháp giải:
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = f(x)\)
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số lẻ nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = - f(x)\)
Bước 1: tìm TXĐ \(D\), chứng minh \(D\) là tập đối xứng
Bước 2: lấy \(x \in D \Rightarrow - x \in D\)
Bước 3: xét \(f\left( { - x} \right)\)
Nếu \(f\left( { - x} \right) = f\left( x \right)\) hàm số chẵn
Nếu \(f( - x) = - f(x)\) hàm số lẻ.
Lời giải chi tiết:
ĐKXĐ: \(\cos x\ne 0\Leftrightarrow x\ne \dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\)
Khi đó tập xác định là: \(D=\mathbb{R}\backslash{\left\{{\dfrac{\pi}{2}+k\pi,k\in\mathbb{Z}}\right\}}\) là tập đối xứng.
Ta có: \(f( - x) ={\sin}^3 (-x)-\tan (-x)\)
\(=-{\sin}^3 x-(-\tan x)\)
\(=-({\sin}^3 x-\tan x)\)
\(=- f(x)\)
Vậy \(y={\sin}^3 x-\tan x\) là hàm số lẻ.
LG b
\(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\)
Phương pháp giải:
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số chẵn nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = f(x)\)
Hàm số \(y = f(x)\) với tập xác định \(D\) gọi là hàm số lẻ nếu
\(x \in D\) thì \( - x \in D\) và \(f( - x) = - f(x)\)
Bước 1: tìm TXĐ \(D\), chứng minh \(D\) là tập đối xứng
Bước 2: lấy \(x \in D \Rightarrow - x \in D\)
Bước 3: xét \(f\left( { - x} \right)\)
Nếu \(f\left( { - x} \right) = f\left( x \right)\) hàm số chẵn
Nếu \(f( - x) = - f(x)\) hàm số lẻ.
Lời giải chi tiết:
ĐKXĐ: \(\sin x\ne 0\Leftrightarrow x\ne k\pi,k\in\mathbb{Z}\)
Khi đó tập xác định là \(D=\mathbb{R}\backslash{\left\{{k\pi,k\in\mathbb{Z}}\right\}}\)
Ta có: \(f( - x) =\dfrac{\cos (-x)+{\cot}^2 (-x)}{\sin (-x)}\)
\(=\dfrac{\cos x+{(-\cot x)}^2}{-\sin x}\)
\(=\dfrac{\cos x+{\cot}^2 x}{-\sin x}\)
\(=-\dfrac{\cos x+{\cot}^2 x}{\sin x}\)
\(=- f(x)\)
Vậy \(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\) là hàm số lẻ.
Chương 1. Cân bằng hóa học
Unit 7: Independent living
Chương III. Điện trường
Unit 8: Healthy and Life expectancy
Chương 5. Mối quan hệ giữa các quá trình sinh lí trong cơ thể sinh vật và một số ngành nghề liên quan đến sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11