1. Nội dung câu hỏi
Cho tam giác \(ABC\) cân tại \(A\). Lấy điểm \(M,N\) lần lượt trên cạnh \(AB,AC\) sao cho \(AM = AN\).
a) Chứng minh tứ giác \(BMNC\) là hình thang cân
b) Xác định vị trí các điểm \(M,N\) để \(BM = MN = NC\).
2. Phương pháp giải
Dựa vào định nghĩa của hình thang cân:
- Hình thang là tứ giác có hai cạnh đối song song
- Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
3. Lời giải chi tiết
a) Vì hai tam giác \(AMN\) và \(ABC\) đều cân tại \(A\) nên
\(\widehat {AMN} = \widehat {ABC}\) (cùng bằng \(\frac{{180^\circ - \widehat A}}{2}\))
Mà \(\widehat {AMN}\) và \(\widehat {ABC}\) nằm ở vị trí đồng vị, suy ra \(MN//BC\).
Tứ giác \(BMNC\) có \(MN//BC\) và \(\widehat {MBC} = \widehat {NCB}\) nên \(BMNC\) là hình thang cân.
b) Do \(BM = MN\) nên tam giác \(MBN\) cân tại \(M\). Suy ra \(\widehat {MNB} = \widehat {MBN}\). Mà \(\widehat {MNB} = \widehat {NBC}\) (hai góc so le trong), suy ra \(\widehat {MBN} = \widehat {NBC}\). Do đó, \(BN\) là tia phân giác của góc \(ABC\).
Chứng minh tương tự ta được \(CM\) là tia phân giác của góc \(ACB\).
Dễ thấy, nếu các điểm \(M,N\) được xác định sao cho \(BM,CN\) lần lượt là tia phân giác của góc \(ABC,ACB\) thì \(BN = MN = CN\).
Vậy \(M\) là giao điểm của \(AB\) và tia phân giác của góc \(ACB,N\) là giao điểm của \(AC\) và tia phân giác của góc \(ABC\) thì \(BN = MN = CN\).
Đề thi học kì 2
Bài 6: Xác định mục tiêu cá nhân
Bài 36. Đặc điểm đất Việt Nam
Bài 20. Khí hậu và cảnh quan trên Trái Đất
ĐỀ THI HỌC KÌ 2 - ĐỊA LÍ 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8