Câu hỏi 14 - Mục Bài tập trang 92

1. Nội dung câu hỏi

Cho tam giác \(ABC\) cân tại \(A\). Lấy điểm \(M,N\) lần lượt trên cạnh \(AB,AC\) sao cho \(AM = AN\).

a)     Chứng minh tứ giác \(BMNC\) là hình thang cân

b)    Xác định vị trí các điểm \(M,N\) để \(BM = MN = NC\).

 

2. Phương pháp giải 

Dựa vào định nghĩa của hình thang cân:

-         Hình thang là tứ giác có hai cạnh đối song song

-         Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

 

3. Lời giải chi tiết

a)     Vì hai tam giác \(AMN\) và \(ABC\) đều cân tại \(A\) nên

\(\widehat {AMN} = \widehat {ABC}\) (cùng bằng \(\frac{{180^\circ  - \widehat A}}{2}\))

Mà \(\widehat {AMN}\) và \(\widehat {ABC}\) nằm ở vị trí đồng vị, suy ra \(MN//BC\).

Tứ giác \(BMNC\) có \(MN//BC\) và \(\widehat {MBC} = \widehat {NCB}\) nên \(BMNC\) là hình thang cân.

b)    Do \(BM = MN\) nên tam giác \(MBN\) cân tại \(M\). Suy ra \(\widehat {MNB} = \widehat {MBN}\). Mà \(\widehat {MNB} = \widehat {NBC}\) (hai góc so le trong), suy ra \(\widehat {MBN} = \widehat {NBC}\). Do đó, \(BN\) là tia phân giác của góc \(ABC\).

Chứng minh tương tự ta được \(CM\) là tia phân giác của góc \(ACB\).

Dễ thấy, nếu các điểm \(M,N\) được xác định sao cho \(BM,CN\) lần lượt là tia phân giác của góc \(ABC,ACB\) thì \(BN = MN = CN\).

Vậy \(M\) là giao điểm của \(AB\) và tia phân giác của góc \(ACB,N\) là giao điểm của \(AC\) và tia phân giác của góc \(ABC\) thì \(BN = MN = CN\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved