PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 14 trang 8 SBT toán 9 tập 2

Đề bài

Vẽ hai đường thẳng \(\left( {{d_1}} \right):x + y = 2\) và \(\left( {{d_2}} \right):2x + 3y = 0\)

Hỏi đường thẳng \(\left( {{d_3}} \right):3x + 2y = 10\) có đi qua giao điểm của \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) hay không?

Phương pháp giải - Xem chi tiết

Sử dụng:

-  Vẽ đường thẳng có phương trình  \(ax+by=c,\ (a,b \ne 0)\):

Ta có \(ax+by=c \Leftrightarrow y=-\dfrac{a}{b}x+\dfrac{c}{b}\).

+) Cho \(x=0 \Rightarrow y=\dfrac{c}{b}\) ta được \(A{\left(0; \dfrac{c}{b}\right)}\)

+) Cho \(y=0 \Rightarrow x=\dfrac{c}{a} \) ta được \(B{\left( \dfrac{c}{a}; 0 \right)} \)

Đường thẳng đã cho là đường thẳng đi qua hai điểm \(A,\ B\).

- Hoành độ giao điểm của hai đường thẳng \(y=ax+b\) và \(y=a'x+b'\) là nghiệm của phương trình: \(ax+b=a'x+b'\).

Giải phương trình trên ta tìm được \(x\). Thay giá trị của \(x\) vào phương trình \(y=ax+b\) hoặc \(y=a'x+b'\), ta tìm được tung độ giao điểm.

-  Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).

Lời giải chi tiết

 

- Vẽ đường thẳng \(\left( {{d_1}} \right):x + y = 2\)

Ta có \(\left( {{d_1}} \right):x + y = 2 \Leftrightarrow y= -x+2\)

Cho \(x = 0 \Rightarrow y = 2\) ta được \(A(0; 2)\)

Cho \(y = 0 \Rightarrow x = 2\) ta được \(B (2; 0)\)

Đường thẳng \(\left( {{d_1}} \right)\) là đường thẳng đi qua hai điểm \(A, \ B\).

- Vẽ đường thẳng \(\left( {{d_2}} \right):2x + 3y = 0\)

Ta có \(\left( {{d_2}} \right):2x + 3y = 0 \Leftrightarrow y = \displaystyle - {2 \over 3}x\)

Cho \(x = 0 \Rightarrow y =  0\) ta được \(O(0; 0)\)

Cho \(x = 3 \Rightarrow y =  - 2\) ta được \(C(3; -2)\)

Đường thẳng \(\left( {{d_2}} \right)\) là đường thẳng đi qua hai điểm \(O, \ C\).

- Hoành độ giao điểm \(M\) của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là nghiệm của phương trình:

\(-x+2= \displaystyle - {2 \over 3}x \Leftrightarrow \displaystyle  {1 \over 3}x = 2 \\ \Leftrightarrow x = 6\)

Suy ra tung độ giao điểm \(M\) là \( y = -6+2=-4\)

Vậy tọa độ giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) là \( M(6;-4).\)

Thay \(x=6;y=-4\) vào phương trình đường thẳng \(\left( {{d_3}} \right)\) ta được:

\(3.6 + 2.\left( { - 4} \right) =10  \Leftrightarrow 18 - 8 = 10 \\  \Leftrightarrow 10=10 \ \text{(luôn đúng)}.\)

Vậy đường thẳng \(\left( {{d_3}} \right):3x + 2y = 10\) đi qua giao điểm của  \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved