Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Cho hai đường tròn có cùng tâm \(O\), bán kính lần lượt là \(R\) và \(r,\left( {R > r} \right)\). \(A\) là một điểm thuộc đường tròn bán kính \(r\). Hãy dựng đường thẳng qua \(A\) cắt đường tròn bán kính \(r\) tại \(B\), cắt đường tròn bán kính \(R\) tại \(C,D\) sao cho \(CD = 3AB\)
Phương pháp giải - Xem chi tiết
- Giả sử dụng được hai điểm \(C,D\) thỏa mãn bài toán.
- Sử dụng kiến thức hình học đã biết để suy ra cách dựng.
Lời giải chi tiết
Gọi \(\left( C \right)\) là đường tròn tâm \(O\) bán kính \(r\), \(\left( {{C_1}} \right)\) là đường tròn tâm \(O\) bán kính \(R\).
Giả sử đường thẳng đã dựng được. Khi đó \(DA = AB = BC\) nên \(D = {D_A}\left( B \right)\).
Mà \(B \in \left( C \right)\) nên \(D \in \left( {C'} \right)\) là ảnh của \(\left( C \right)\) qua phép đối xứng qua tâm \(A\).
Lại có \(D \in \left( C \right)\) (giả thiết) nên \(D = \left( {C'} \right) \cap \left( {{C_1}} \right)\).
Từ đó ta có cách dựng:
+) Dựng ảnh \(\left( {C'} \right)\) của \(\left( C \right)\) qua phép đối xứng tâm \(A\).
+) Nếu \(\left( {C'} \right)\) không cắt \(\left( {{C_1}} \right)\) thì không có điểm \(C,D\) thỏa mãn bài toán.
+) Nếu \(\left( {C'} \right)\) tiếp xúc \(\left( {{C_1}} \right)\) tại duy nhất một điểm thì có một cặp điểm \(C,D\) thỏa mãn bài toán.
+) Nếu \(\left( {C'} \right)\) cắt \(\left( {{C_1}} \right)\) tại hai điểm phân biệt thì có hai cặp điểm \(C,D\) thỏa mãn bài toán.
Unit 10: Cities of the future
Bài 8: Hợp chất hữu cơ và hóa học hữu cơ
Chủ đề 1: Vai trò, tác dụng của môn bóng rổ đối với sự phát triển thể chất - các tình huống được phát bóng biên và ném phạt trong thi đấu môn bóng rổ
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 11
HÌNH HỌC- TOÁN 11 NÂNG CAO
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11