Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Cho hình bình hành \(ABCD\) có \(AB\) cố định, đường chéo \(AC\) có độ dài bằng \(m\) không đổi. Chứng minh rằng khi \(C\) thay đổi, tập hợp các điểm \(D\) thuộc một đường tròn cố định.
Phương pháp giải - Xem chi tiết
Tìm quỹ tích điểm \(C\) và sử dụng tính chất của phép tịnh tiến để suy ra quỹ tích điểm \(D\).
Lời giải chi tiết
Dễ thấy \(\overrightarrow {CD} = \overrightarrow {BA} \) và \(A,B\) cố định nên \(D = {T_{\overrightarrow {BA} }}\left( C \right)\).
Do \(C\) chạy trên đường tròn \(\left( C \right)\) tâm \(A\) bán kính \(m\), trừ ra giao điểm của \(\left( C \right)\) với đường thẳng \(AB\), nên \(D\) thuộc đường tròn là ảnh của đường tròn nói trên qua phép tịnh tiến theo vectơ \(\overrightarrow {BA} \).
Chủ đề 3. Các phương pháp gia công cơ khí
Unit 11: Careers
Review 1 (Units 1-3)
Tải 10 đề kiểm tra 15 phút - Chương VII - Hóa học 11
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11