1. Nội dung câu hỏi
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0},b} \right)\). Phát biểu nào sau đây là đúng?
A. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).
B. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \to {x_0}\), ta có\(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).
C. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to L\), ta có \(f\left( {{x_n}} \right) \to {x_0}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).
D. Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} < {x_0}\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).
2. Phương pháp giải
Sử dụng định nghĩa giới hạn bên phải của hàm số.
3. Lời giải chi tiết
Sử dụng định nghĩa giới hạn bên phải: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0},b} \right)\). Số \(L\) được gọi là giới hạn bên phải của hàm số \(y = f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to L\). Kí hiệu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).
Đáp án đúng là A.
CHƯƠNG III - DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương VII - Hóa học 11
Chủ đề 2: Nitrogen và sulfur
Unit 6: High-flyers
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11