Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Tam giác \(ABC\) cân tại \(A\), \(BC = 12cm\), đường cao \(AH = 4cm\). Tính bán kính của đường tròn ngoại tiếp tam giác \(ABC.\)
Phương pháp giải - Xem chi tiết
+ Đường tròn ngoại tiếp của tam giác là đường tròn đi qua tất cả các đỉnh của tam giác.
+ Xét tam giác ABC vuông tại A, có đường cao AH:
- Áp dụng định lí Pytago: \(B{C^2} = A{B^2} + A{C^2}\)
- Hệ thức lượng trong tam giác vuông: \(A{H^2} = BH.HC\)
Lời giải chi tiết
Kéo dài đường cao \(AH\) cắt đường tròn ngoại tiếp tam giác \(ABC\) tại \(D\). Gọi \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)
Vì tam giác \(ABC\) cân tại \(A\) nên \(AH\) vừa là đường cao vừa là đường trung trực của \(BC\).
Suy ra \(AD\) là đường trung trực của \(BC\) và H là trung điểm của BC.
Khi đó \(O\) thuộc \(AD\) hay \(AD\) là đường kính của đường tròn ngoại tiếp tam giác \(ABC\).
Tam giác \(ACD\) nội tiếp trong (O) có \(AD\) là đường kính suy ra: \(\widehat {ACD} = 90^\circ \)
Tam giác \(ACD\) vuông tại \(C\) nên theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: \(C{H^2} = HA.HD\)
Suy ra: \(HD = \dfrac{{C{H^2}}}{{HA}} = \dfrac{{{{\left( {\dfrac{{BC}}{2}} \right)}^2}}}{{HA}}\)\( = \dfrac{{{{\left( {\dfrac{{12}}{2}} \right)}^2}}}{4} = \dfrac{{{6^2}}}{4} = \dfrac{{36}}{4} = 9\)
Ta có:
\(AD = AH +HD = 4 + 9 = 13\) (cm)
Vậy bán kính của đường tròn (O) là:
\(R = \dfrac{{AD}}{ 2} = \dfrac{{13}}{2} = 6,5\) (cm)
Loigiaihaycom
Đề thi vào 10 môn Toán Thái Bình
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
Bài 7: Kế thừa và phát huy truyền thống tốt đẹp của dân tộc
Bài 32. Vùng Đông Nam Bộ (tiếp theo)
CHƯƠNG 2: ĐIỆN TỪ HỌC